DL‐based inpainting for metal artifact reduction for cone beam CT using metal path length information

修补 工件(错误) 人工智能 卷积神经网络 还原(数学) 计算机科学 计算机视觉 过程(计算) 路径(计算) 锥束ct 特征(语言学) 相似性(几何) 模式识别(心理学) 计算机断层摄影术 图像(数学) 医学 数学 放射科 几何学 程序设计语言 操作系统 语言学 哲学
作者
Tristan M. Gottschalk,Andreas Maier,Florian Kordon,Björn W. Kreher
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 128-141 被引量:5
标识
DOI:10.1002/mp.15909
摘要

Abstract Background Metallic implants, which are inserted into the patient's body during trauma interventions, are the main cause of heavy artifacts in 3D X‐ray acquisitions. These artifacts then hinder the evaluation of the correct implant's positioning, thus leading to a disturbed patient's healing process and increased revision rates. Purpose This problem is tackled by so‐called metal artifact reduction (MAR) methods. This paper examines possible advances in the inpainting process of such MAR methods to decrease disruptive artifacts while simultaneously preserving important anatomical structures adjacent to the inserted implants. Methods In this paper, a learning‐based inpainting method for cone‐beam computed tomography is proposed that couples a convolutional neural network (CNN) with an estimated metal path length as prior knowledge. Further, the proposed method is solely trained and evaluated on real measured data. Results The proposed inpainting approach shows advantages over the inpainting method used by the currently clinically approved frequency split metal artifact reduction (fsMAR) method as well as the learning‐based state‐of‐the‐art (SOTA) method PConv‐Net. The major improvement of the proposed inpainting method lies in the ability to correctly preserve important anatomical structures in those regions adjacent to the metal implants. Especially these regions are highly important for a correct implant's positioning in an intraoperative setup. Using the proposed inpainting, the corresponding MAR volumes reach a mean structural similarity index measure (SSIM) score of 0.9974 and outperform the other methods by up to 6 dB on single slices regarding the peak signal‐to‐noise ratio (PSNR) score. Furthermore, it can be shown that the proposed method can generalize to clinical cases at hand. Conclusions In this paper, a learning‐based inpainting network is proposed that leverages prior knowledge about the metal path length of the inserted implant. Evaluations on real measured data reveal an increased overall MAR performance, especially regarding the preservation of anatomical structures adjacent to the inserted implants. Further evaluations suggest the ability of the proposed approach to generalize to clinical cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听千风完成签到,获得积分10
1秒前
1秒前
游you发布了新的文献求助10
2秒前
英仙座完成签到,获得积分10
4秒前
5秒前
5秒前
完美的一天完成签到,获得积分10
5秒前
初期完成签到 ,获得积分10
6秒前
科研通AI2S应助咕咕咕采纳,获得10
6秒前
汉堡包应助Aaaa采纳,获得10
6秒前
7秒前
科研通AI2S应助疯狂的师采纳,获得10
7秒前
车厘子水门汀完成签到 ,获得积分10
8秒前
8秒前
wjx完成签到,获得积分10
8秒前
李健应助周凡淇采纳,获得10
9秒前
小二郎应助周凡淇采纳,获得10
9秒前
9秒前
Singularity应助周凡淇采纳,获得10
9秒前
科研通AI2S应助周凡淇采纳,获得10
9秒前
穆紫应助周凡淇采纳,获得10
9秒前
爆米花应助周凡淇采纳,获得10
9秒前
熊熊面包应助周凡淇采纳,获得10
9秒前
9秒前
9秒前
lxx完成签到 ,获得积分10
9秒前
非鱼完成签到,获得积分10
10秒前
abudu发布了新的文献求助10
11秒前
差生文具多完成签到 ,获得积分10
12秒前
HKY完成签到,获得积分10
12秒前
一点完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
没有逗应助andrele采纳,获得10
15秒前
15秒前
18秒前
友好的季节完成签到,获得积分10
18秒前
闪闪的以山完成签到 ,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125565
求助须知:如何正确求助?哪些是违规求助? 2775869
关于积分的说明 7728200
捐赠科研通 2431356
什么是DOI,文献DOI怎么找? 1291928
科研通“疑难数据库(出版商)”最低求助积分说明 622278
版权声明 600376