Fast and accurate multi-class geospatial object detection with large-size remote sensing imagery using CNN and Truncated NMS

计算机科学 目标检测 人工智能 卷积神经网络 计算机视觉 滤波器(信号处理) 修剪 交叉口(航空) 对象(语法) 遥感 数据挖掘 模式识别(心理学) 地理 地图学 农学 生物
作者
Yanyun Shen,Di Liu,Feizhao Zhang,Qingling Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 235-249 被引量:20
标识
DOI:10.1016/j.isprsjprs.2022.07.019
摘要

Multi-class geospatial object detection with remote sensing imagery has broad prospects in urban planning, natural disaster warning, industrial production, military surveillance and other applications. Accuracy and efficiency are two common measures for evaluating object detection models, and it is often difficult to achieve both at the same time. Developing a practical remote sensing object detection algorithm that balances the accuracy and efficiency is thus a big challenge in the Earth observation community. Here, we propose a comprehensive high-speed multi-class remote sensing object detection method. Firstly, we obtain a multi-volume YOLO (You Only Look Once) v4 model for balancing speed and accuracy, based on a pruning strategy of the convolutional neural network (CNN) and the one-stage object detection network YOLO v4. Moreover, we apply the Manhattan-Distance Intersection of Union (MIOU) loss function to the multi-volume YOLO v4 to further improve the accuracy without additional computational burden. Secondly, mainly due to computing limitations, a remote sensing image that is large-size relative to a natural image must first be divided into multiple smaller tiles, which are then detected separately, and finally, the detection results are spliced back to match the original image. In the process of remote sensing image slicing, a large number of truncated objects appear at the edge of tiles, which will produce a large number of false results in the subsequent detection links. To solve this problem, we propose a Truncated Non-Maximum Suppression (NMS) algorithm to filter out repeated and false detection boxes from truncated targets in the spliced detection results. We compare the proposed algorithm with the state-of-the-art methods on the Dataset for Object deTection in Aerial images (DOTA) and DOTA v2. Quantitative evaluations show that mAP and FPS reach 77.3 and 35 on DOTA, and 61.0 and 74 on DOTA v2. Overall, our method reaches the optimal balance between efficiency and accuracy, and realizes the high-speed remote sensing object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮半鬼发布了新的文献求助10
刚刚
刚刚
schuang完成签到,获得积分10
1秒前
大米发布了新的文献求助10
1秒前
1秒前
sdf完成签到,获得积分10
1秒前
2秒前
科研通AI5应助Guo采纳,获得10
2秒前
sbrcpyf完成签到,获得积分10
3秒前
zho应助张华采纳,获得50
3秒前
Prince完成签到,获得积分10
4秒前
4秒前
liming完成签到,获得积分10
4秒前
47吃不够yu发布了新的文献求助10
5秒前
李小布发布了新的文献求助10
5秒前
雪糕发布了新的文献求助10
5秒前
111发布了新的文献求助10
6秒前
科研通AI5应助唯我文乃采纳,获得10
6秒前
糊糊完成签到,获得积分10
6秒前
6秒前
朴素听兰完成签到,获得积分10
6秒前
Jeff完成签到,获得积分10
7秒前
li完成签到,获得积分10
8秒前
依米zhang发布了新的文献求助10
9秒前
10秒前
YYiijj完成签到 ,获得积分10
10秒前
11秒前
zzz完成签到,获得积分10
11秒前
汉堡包应助开心的小馒头采纳,获得10
12秒前
zzzq应助zy采纳,获得10
12秒前
12秒前
12秒前
Zll完成签到,获得积分10
12秒前
SciGPT应助清风朗月采纳,获得10
13秒前
格格萧发布了新的文献求助10
15秒前
15秒前
嘻嘻完成签到,获得积分10
15秒前
16秒前
正直草丛发布了新的文献求助30
16秒前
zhangjianing发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582022
求助须知:如何正确求助?哪些是违规求助? 3151548
关于积分的说明 9488290
捐赠科研通 2853711
什么是DOI,文献DOI怎么找? 1568809
邀请新用户注册赠送积分活动 734810
科研通“疑难数据库(出版商)”最低求助积分说明 720809