Fraud detection in financial statements using data mining and GAN models

提交 计算机科学 审计 维数之咒 特征(语言学) 债权人 数据挖掘 机器学习 财务 会计 业务 数据库 债务 语言学 哲学
作者
Seyyede Zahra Aftabi,Ali Ahmadi,Saeed Farzi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120144-120144 被引量:5
标识
DOI:10.1016/j.eswa.2023.120144
摘要

Financial statements are analytical reports published periodically by financial institutions explaining their performance from different perspectives. As these reports are the fundamental source for decision-making by many stakeholders, creditors, investors, and even auditors, some institutions may manipulate them to mislead people and commit fraud. Fraud detection in financial statements aims to discover anomalies caused by these distortions and discriminate fraud-prone reports from non-fraudulent ones. Although binary classification is one of the most popular data mining approaches in this area, it requires a standard labeled dataset, which is often unavailable in the real world due to the rarity of fraudulent samples. This paper proposes a novel approach based on the generative adversarial networks (GAN) and ensemble models that is able to not only resolve the lack of non-fraudulent samples but also handle the high-dimensionality of feature space. A new dataset is also constructed by collecting the annual financial statements of ten Iranian banks and then extracting three types of features suggested in this study. Experimental results on this dataset demonstrate that the proposed method performs well in generating synthetic fraud-prone samples. Moreover, it attains comparative performance with supervised models and better performance than unsupervised ones in accurately distinguishing fraud-prone samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANA完成签到,获得积分10
5秒前
令莞完成签到,获得积分10
5秒前
Weining完成签到,获得积分10
7秒前
白华苍松完成签到,获得积分10
9秒前
睡懒觉完成签到 ,获得积分10
11秒前
无痕完成签到,获得积分10
12秒前
hxq1015完成签到,获得积分10
15秒前
18秒前
淡淡的若冰应助yueqin采纳,获得10
18秒前
糟糕的富应助体贴的青烟采纳,获得10
19秒前
哎嘿应助科研通管家采纳,获得10
20秒前
哎嘿应助科研通管家采纳,获得10
20秒前
ShowMaker应助科研通管家采纳,获得30
20秒前
大个应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
执着访文应助科研通管家采纳,获得20
20秒前
小懒猪完成签到,获得积分10
21秒前
刘畅完成签到,获得积分10
21秒前
23秒前
23秒前
unflycn发布了新的文献求助10
24秒前
清脆忆南完成签到 ,获得积分10
25秒前
传奇3应助白华苍松采纳,获得10
25秒前
潇洒的擎苍完成签到,获得积分10
26秒前
26秒前
飘逸锦程完成签到 ,获得积分10
27秒前
追寻宛海发布了新的文献求助20
28秒前
ynchendt完成签到,获得积分10
28秒前
上官若男应助Leila采纳,获得10
28秒前
zzzz发布了新的文献求助10
29秒前
WLL完成签到,获得积分10
29秒前
sunny完成签到,获得积分10
30秒前
LINHAN发布了新的文献求助10
30秒前
32秒前
33秒前
33秒前
雪生在无人荒野完成签到,获得积分10
36秒前
LINHAN完成签到,获得积分10
36秒前
李健应助斑马兽采纳,获得10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012