Fraud detection in financial statements using data mining and GAN models

提交 计算机科学 审计 维数之咒 特征(语言学) 债权人 数据挖掘 机器学习 财务 会计 业务 数据库 语言学 债务 哲学
作者
Seyyede Zahra Aftabi,Ali Ahmadi,Saeed Farzi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120144-120144 被引量:29
标识
DOI:10.1016/j.eswa.2023.120144
摘要

Financial statements are analytical reports published periodically by financial institutions explaining their performance from different perspectives. As these reports are the fundamental source for decision-making by many stakeholders, creditors, investors, and even auditors, some institutions may manipulate them to mislead people and commit fraud. Fraud detection in financial statements aims to discover anomalies caused by these distortions and discriminate fraud-prone reports from non-fraudulent ones. Although binary classification is one of the most popular data mining approaches in this area, it requires a standard labeled dataset, which is often unavailable in the real world due to the rarity of fraudulent samples. This paper proposes a novel approach based on the generative adversarial networks (GAN) and ensemble models that is able to not only resolve the lack of non-fraudulent samples but also handle the high-dimensionality of feature space. A new dataset is also constructed by collecting the annual financial statements of ten Iranian banks and then extracting three types of features suggested in this study. Experimental results on this dataset demonstrate that the proposed method performs well in generating synthetic fraud-prone samples. Moreover, it attains comparative performance with supervised models and better performance than unsupervised ones in accurately distinguishing fraud-prone samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助奋斗的宛亦采纳,获得10
刚刚
Karry完成签到 ,获得积分10
1秒前
1秒前
2秒前
nqyKOj发布了新的文献求助20
2秒前
JamesPei应助HYI采纳,获得10
2秒前
myj发布了新的文献求助10
2秒前
欣欣完成签到,获得积分10
3秒前
Lucifer完成签到,获得积分10
3秒前
3秒前
duli发布了新的文献求助10
3秒前
3秒前
4秒前
Owen应助认真柜子采纳,获得10
4秒前
FashionBoy应助薇薇安采纳,获得10
4秒前
科研通AI5应助欢呼妙菱采纳,获得10
5秒前
霸气鞯完成签到 ,获得积分10
5秒前
xxcarry完成签到 ,获得积分10
5秒前
5秒前
rlix发布了新的文献求助10
6秒前
个性梦蕊发布了新的文献求助10
6秒前
欣欣发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
Jasper应助俏皮的鞋垫采纳,获得10
8秒前
默默水之完成签到,获得积分10
8秒前
9秒前
22发布了新的文献求助10
9秒前
carrier_hc完成签到,获得积分10
10秒前
fairy完成签到,获得积分10
10秒前
Jiang发布了新的文献求助10
10秒前
ganchao1776完成签到,获得积分10
12秒前
小蘑菇应助兜兜窦采纳,获得30
12秒前
褚恋风完成签到 ,获得积分10
12秒前
窝的小卷毛完成签到,获得积分10
12秒前
环游水星发布了新的文献求助10
12秒前
12秒前
无私的珩发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635