已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Seismic velocity inversion transformer

卷积神经网络 反演(地质) 计算机科学 地震反演 地质学 地震学 合成数据 地震记录 算法 模式识别(心理学) 人工智能 几何学 数学 方位角 构造学
作者
Hongzhou Wang,Jun Lin,Xintong Dong,Shaoping Lu,Yue Li,Baojun Yang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (4): R513-R533 被引量:27
标识
DOI:10.1190/geo2022-0283.1
摘要

Velocity model inversion is one of the most challenging tasks in seismic exploration, and an accurate velocity model is essential for high-resolution seismic imaging. Recently, velocity inversion methods based on deep learning (DL), particularly convolutional neural networks (CNNs), have attracted considerable attention from the seismic exploration community. These researchers aim to directly estimate the velocity model from raw seismograms using a well-trained model. Although CNN-based velocity inversion methods have demonstrated remarkable performance in terms of intelligence and automation, their inversion performance is often constrained by a limited long-range dependence. Specifically, when conducting a convolutional operation on raw seismic data using small kernels (i.e., 1 × 1, 3 × 3, 5 × 5, and 7 × 7), CNN-based methods extract only the local features and neglect the weak spatial correlation between different local features that reflect the information of the same interface. This correlation could assist CNN in providing an overview of the seismic data and promote inversion performance when using DL. Furthermore, the time-varying properties of seismic data pose a challenge to the weight sharing of CNNs. Here, we have developed a new DL framework based on a transformer, called the seismic velocity inversion transformer (SVIT), to address the problem of velocity inversion. SVIT uses a self-attention mechanism to capture the long-range dependence of seismic data, rather than stacking multiple convolutional layers as in CNNs. Thus, SVIT can provide more informative remote features for building velocity models. The validity and reliability of the proposed method are demonstrated through numerical experiments using synthetic models. Compared with the conventional full-waveform inversion method and an existing CNN-based velocity inversion method, our SVIT indicates greater consistency with the target in terms of the velocity value, subsurface structures, and geologic interfaces and is expected to provide a new DL-based solution to resolve inversion problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FERN0826完成签到 ,获得积分10
6秒前
无情的菲鹰完成签到 ,获得积分10
11秒前
11秒前
乐观松思发布了新的文献求助10
16秒前
21秒前
23秒前
24秒前
25秒前
LRxxx完成签到 ,获得积分10
26秒前
乐观松思完成签到,获得积分10
33秒前
stop here完成签到,获得积分10
39秒前
二掌柜的完成签到,获得积分10
40秒前
47秒前
56秒前
不知名混子完成签到 ,获得积分10
59秒前
点心完成签到,获得积分10
1分钟前
zy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
可爱的函函应助小郭采纳,获得10
1分钟前
fryeia完成签到,获得积分10
1分钟前
geejee完成签到,获得积分10
1分钟前
Hubery完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
平常的羊完成签到 ,获得积分10
1分钟前
烟花应助清水采纳,获得10
1分钟前
自然元风完成签到,获得积分10
1分钟前
wanci应助lanxinyue采纳,获得10
1分钟前
ZJ完成签到,获得积分10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
山鸟与鱼不同路完成签到 ,获得积分10
1分钟前
1分钟前
CYL07完成签到 ,获得积分10
1分钟前
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
清水发布了新的文献求助10
1分钟前
lsl发布了新的文献求助10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
大神完成签到,获得积分10
1分钟前
79完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379057
求助须知:如何正确求助?哪些是违规求助? 2994543
关于积分的说明 8759649
捐赠科研通 2679076
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381