作者
So Min Park,Mingyang Wei,Nikolaos Lempesis,Wenjin Yu,Tareq Hossain,Lorenzo Agosta,Virginia Carnevali,Harindi R. Atapattu,Peter Serles,Felix T. Eickemeyer,Maral Vafaie,Kasra Darabi,Eui Dae Jung,Yi Yang,Da Bin Kim,Shaik M. Zakeeruddin,Bin Chen,Aram Amassian,Tobin Filleter,Mercouri G. Kanatzidis,Kenneth R. Graham,Lixin Xiao,Ursula Röthlisberger,Michaël Grätzel,Edward H. Sargent
摘要
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following > 1000 hours of maximum power point tracking under 1-sun illumination.