电解质
超级电容器
电容
材料科学
离子电导率
电极
功率密度
乙二醇
电导率
化学工程
化学
热力学
功率(物理)
物理
工程类
物理化学
作者
Yuzhen Qian,Yang Yu,Wenna Wu,Qi Hua Fan,Chunxiao Chai,Jingcheng Hao
标识
DOI:10.1002/chem.202300123
摘要
Hydrogel-based flexible supercapacitors possess the merits of highly ionic conductivity and superior power density, but the existence of water limits their application in extreme temperature scenarios. Noticeably, it is a challenge for people to design more extremely temperature adaptable systems for flexible supercapacitors based on hydrogels with a wide temperature region. In this work, a wide-temperature flexible supercapacitor that can operate at -20-80 °C was fabricated by an organohydrogel electrolyte and its combined electrode (also known as an electrode/electrolyte composite). Upon introducing highly hydratable LiCl into an ethylene glycol (EG)/H2 O binary solvent, owing to the ionic hydration effect of LiCl and the hydrogen bond interaction between EG and H2 O molecules, the organohydrogel electrolyte exhibits satisfactory resistance to freezing (freezing point of -113.9 °C), anti-drying capability (78.2 % of weight retention after vacuum drying at 60 °C for 12 h) and excellent ionic conductivity both at room temperature (13.9 mS cm-1 ) and low temperature (6.5 mS cm-1 after 31 days at -20 °C). By using organohydrogel electrolyte as binder, the prepared electrode/electrolyte composite effectively reduces interface impedance and enhances specific capacitance due to the uninterrupted ion transport channels and extended interface contact area. The assembled supercapacitor delivers a specific capacitance of 149 F g-1 , a power density of 160 W kg-1 , and an energy density of 13.24 Wh kg-1 at a current density of 0.2 A g-1 . The initial 100 % capacitance can be maintained after 2000 cycles at 1.0 A g-1 . More importantly, the specific capacitances can be well maintained even at -20 and 80 °C. With other advantages such as excellent mechanical property, the supercapacitor is an ideal power source suitable for various working conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI