Short-term solar PV forecasting using computer vision: The search for optimal CNN architectures for incorporating sky images and PV generation history

光伏系统 计算机科学 卷积神经网络 自回归模型 人工智能 特征(语言学) 太阳能 机器学习 功率(物理) 工程类 计量经济学 物理 电气工程 语言学 哲学 量子力学 经济
作者
Vignesh Venugopal,Yuchi Sun,Adam R. Brandt
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:11 (6) 被引量:31
标识
DOI:10.1063/1.5122796
摘要

Cloud movement makes short-term forecasting of solar photovoltaic (PV) panel output challenging. A better PV forecast can realize value for both grid operators and commercial or industrial customers with solar assets. In this study, we build convolutional neural network (CNN) based models to forecast power output from PV panels 15 min into the future. Model inputs are the PV power output history and ground-based sky images for the past 15 min. The key challenge is ensuring that due importance is given to each type of input. We systematically explore 28 methods of “fusing” these heterogeneous inputs in our CNN. These methods of fusion (MoF) belong to 4 families. We also systematically explore the many hyperparameters related to model training and tuning. Limited resources preclude an exhaustive search. We apply a three-stage “funnel” approach instead, wherein we narrow our search to the most promising one of these 28 MoF. We find that a two-step autoregression-CNN MoF has the best performance followed closely by a “mix-in” MoF that performs feature expansion and reduction to give appropriate importance to the two types of inputs. The two-step autoregression-CNN model has a forecast skill (FS) of 17.1% relative to smart persistence on the test set comprising 20 complete days (9 sunny, FS = 22%; 11 cloudy, FS = 16.9%). This optimization results in the improvement of FS from 14.1% for a previously published nonoptimized “baseline” model, a CNN wherein the PV history was simply concatenated to the end of the image-sourced vector obtained after convolution, pooling, and flattening operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑的擎发布了新的文献求助10
1秒前
王滕发布了新的文献求助10
1秒前
1秒前
自觉大门发布了新的文献求助20
2秒前
无情的君浩应助冷静新烟采纳,获得10
2秒前
2秒前
乘风的法袍完成签到,获得积分10
2秒前
3秒前
福瑞灯完成签到,获得积分10
3秒前
现代雁桃发布了新的文献求助10
3秒前
ddog完成签到,获得积分10
4秒前
七七七完成签到,获得积分10
4秒前
5秒前
心灵美的芝麻完成签到,获得积分10
7秒前
王元凡完成签到,获得积分10
7秒前
孔问筠完成签到,获得积分10
7秒前
7秒前
隐形的傲易完成签到 ,获得积分10
8秒前
8秒前
8秒前
L77关闭了L77文献求助
8秒前
这种发布了新的文献求助10
9秒前
无情的君浩应助冷静新烟采纳,获得10
9秒前
9秒前
和气生财君完成签到 ,获得积分10
10秒前
Wendy完成签到,获得积分10
10秒前
大意的素完成签到 ,获得积分10
10秒前
酱子完成签到 ,获得积分10
10秒前
11秒前
111完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
共享精神应助123采纳,获得10
13秒前
欢喜藏今发布了新的文献求助10
13秒前
13秒前
eve完成签到,获得积分10
14秒前
传奇3应助李lili采纳,获得10
14秒前
原点完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926