A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治学 政治 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助renxin采纳,获得10
1秒前
52hzzz关注了科研通微信公众号
1秒前
fanfan发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
宁羽发布了新的文献求助10
5秒前
大块发布了新的文献求助10
6秒前
王之争霸完成签到,获得积分10
6秒前
6秒前
领导范儿应助高手采纳,获得10
7秒前
积极幻雪完成签到 ,获得积分10
8秒前
万能图书馆应助han采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
笨笨米卡应助龙弟弟采纳,获得10
10秒前
明芬发布了新的文献求助10
10秒前
Jasper应助人123456采纳,获得10
10秒前
10秒前
烟花应助哇晒采纳,获得10
10秒前
10秒前
打打应助阳光的道消采纳,获得10
11秒前
12秒前
fanfan完成签到,获得积分10
13秒前
波妞发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
fjnm发布了新的文献求助10
15秒前
浮浮世世发布了新的文献求助10
16秒前
16秒前
Wei完成签到,获得积分10
18秒前
18秒前
19秒前
liamddd完成签到 ,获得积分10
21秒前
半农完成签到,获得积分0
21秒前
Sun完成签到,获得积分20
22秒前
22秒前
啊啾发布了新的文献求助60
22秒前
23秒前
Wwww发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131