A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治 政治学 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助朴实薯片采纳,获得10
1秒前
满穗完成签到,获得积分10
1秒前
1秒前
调皮寄瑶发布了新的文献求助10
1秒前
楼台杏花琴弦完成签到,获得积分10
3秒前
orixero应助奇奇吃面采纳,获得10
3秒前
4秒前
hsiao_yang完成签到 ,获得积分10
5秒前
6秒前
chengcheng应助重要初翠采纳,获得10
7秒前
书霂发布了新的文献求助10
9秒前
Zz完成签到 ,获得积分10
10秒前
Gilbert完成签到,获得积分10
11秒前
CipherSage应助周瓦特采纳,获得10
11秒前
12秒前
科研小白发布了新的文献求助10
13秒前
13秒前
owen3710完成签到,获得积分10
14秒前
陈追命完成签到,获得积分10
14秒前
摩天轮完成签到 ,获得积分10
15秒前
细心的雨真完成签到 ,获得积分20
15秒前
haha发布了新的文献求助10
16秒前
林燊完成签到,获得积分10
24秒前
我是老大应助苗苗会喵喵采纳,获得10
24秒前
坚强幼晴完成签到,获得积分10
25秒前
26秒前
传奇3应助yellow采纳,获得10
27秒前
27秒前
细心的雨真关注了科研通微信公众号
28秒前
30秒前
31秒前
每念至此完成签到,获得积分10
31秒前
32秒前
小马甲应助owen3710采纳,获得10
32秒前
haomozc发布了新的文献求助10
32秒前
赵勇发布了新的文献求助10
33秒前
35秒前
上官若男应助倒置的脚印采纳,获得10
35秒前
36秒前
Tao发布了新的文献求助10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870