A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治 政治学 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu发布了新的文献求助10
刚刚
刚刚
grandtough完成签到,获得积分10
刚刚
coolman冰人发布了新的文献求助10
刚刚
刚刚
Song发布了新的文献求助10
1秒前
小蘑菇应助5114采纳,获得10
1秒前
1秒前
chaochao完成签到,获得积分10
1秒前
juwairen119发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
王红瑞完成签到 ,获得积分20
2秒前
滟滟完成签到,获得积分10
3秒前
我先睡了发布了新的文献求助10
3秒前
小马甲应助123采纳,获得10
3秒前
JamesPei应助坚强的哈密瓜采纳,获得10
3秒前
小叶子关注了科研通微信公众号
4秒前
Katyusha发布了新的文献求助10
4秒前
Zx_1993应助传统的雁芙采纳,获得10
4秒前
柳青发布了新的文献求助30
4秒前
怕黑明雪发布了新的文献求助30
5秒前
wjt发布了新的文献求助10
5秒前
5秒前
5秒前
陌殇发布了新的文献求助30
5秒前
6秒前
fy完成签到,获得积分10
6秒前
JamesPei应助轩辕断天采纳,获得10
6秒前
擦撒擦擦完成签到,获得积分10
7秒前
寒冷沛柔完成签到,获得积分10
7秒前
没有答案发布了新的文献求助10
7秒前
大胆帮帮主完成签到,获得积分10
7秒前
8秒前
派大星完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
ZgnomeshghT发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744