A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治学 政治 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Grace发布了新的文献求助10
刚刚
mort发布了新的文献求助10
1秒前
在水一方应助药言采纳,获得30
1秒前
ding应助ZFW采纳,获得10
1秒前
樱桃发布了新的文献求助10
1秒前
1秒前
斯文可仁完成签到,获得积分10
2秒前
GAOBIN000完成签到,获得积分20
2秒前
EIei完成签到,获得积分10
2秒前
2秒前
wanci应助yuanyuan采纳,获得10
2秒前
彭于晏应助鲁松采纳,获得10
2秒前
液氧完成签到,获得积分20
3秒前
3秒前
甜晞发布了新的文献求助10
3秒前
英俊的铭应助酷炫灵安采纳,获得10
4秒前
大模型应助液体剑0932采纳,获得10
4秒前
贪玩的千凡完成签到,获得积分10
5秒前
追寻的夏波应助王铎采纳,获得10
5秒前
Fjun发布了新的文献求助10
5秒前
Jasper应助期刊采纳,获得10
6秒前
赘婿应助不晚采纳,获得10
6秒前
ding应助ff采纳,获得10
6秒前
华仔应助纳川采纳,获得10
7秒前
笨蛋小章应助EIei采纳,获得20
9秒前
小二郎应助同瓜不同命采纳,获得10
9秒前
jogrgr完成签到,获得积分10
9秒前
zhang发布了新的文献求助20
9秒前
9秒前
威武的飞阳完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Zz完成签到 ,获得积分10
11秒前
kunpenezy发布了新的文献求助10
11秒前
12秒前
zyt发布了新的文献求助10
13秒前
ZZZZZ完成签到,获得积分10
13秒前
伊森完成签到,获得积分10
13秒前
13秒前
酷炫灵安发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058