A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治学 政治 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助wu采纳,获得10
2秒前
superhero完成签到,获得积分10
2秒前
FancyShi发布了新的文献求助10
2秒前
2秒前
2秒前
笨笨翰发布了新的文献求助10
2秒前
汉堡包应助Paradox采纳,获得10
3秒前
3秒前
3秒前
hhh发布了新的文献求助10
3秒前
小黑球完成签到,获得积分10
3秒前
3秒前
hhh完成签到,获得积分10
3秒前
昏睡的蟠桃应助小路采纳,获得50
3秒前
灵巧谷波完成签到,获得积分10
3秒前
孤傲的静脉完成签到 ,获得积分10
4秒前
雪下的地发布了新的文献求助10
4秒前
4秒前
老实幻姬发布了新的文献求助10
4秒前
Q7发布了新的文献求助20
4秒前
4秒前
在水一方应助端庄断秋采纳,获得10
5秒前
和谐的追命完成签到,获得积分10
5秒前
6秒前
zzz完成签到,获得积分10
6秒前
连冷安发布了新的文献求助30
6秒前
坦率的世开完成签到,获得积分10
6秒前
传统的凝天完成签到,获得积分10
6秒前
7秒前
贪玩白开水完成签到,获得积分10
7秒前
7秒前
7秒前
Yichen完成签到,获得积分10
7秒前
贝肯妮发布了新的文献求助10
7秒前
炙热的书竹完成签到,获得积分10
7秒前
优雅幻天完成签到,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406