A Topic Mining Method for Multi-source Network Public Opinion Based on Improved Hierarchical Clustering

计算机科学 聚类分析 层次聚类 舆论 数据挖掘 人工智能 政治学 政治 法学
作者
Yue Cai,Xu Wu,Xiaqing Xie,Jin Xu
标识
DOI:10.1109/dsc.2019.00073
摘要

Heterogeneous network information platform contains common topics and characteristic topics. However, there is no unified standard for dividing public opinion topics. And the existing technology cannot adapt to the characteristics of the multi-source network platform well. This paper proposes a semi-supervised topic mining method. The core of this method is the semi-supervised hierarchical clustering algorithm improved from the traditional hierarchical clustering algorithm. On the basis of this algorithm, the optimization is carried out from the perspectives of model input vectorization and high-quality topic selection. Therefore, the method proposed in this paper can be effectively applied to the topic and hierarchical structure mining of short texts on multi-source network platforms with a wide range of topics, lots of text noise and a lack of grammatical norms. It accurately extracts the common topic and characteristic topic of the platform and the hierarchy between topics. Experiments show that this method can mine the topic and its hierarchy effectively, and it is better than the traditional LDA topic model in hierarchical structure mining and fine-grained topic mining. By analyzing the text data of the multi-source network platform, the thesis can dig out the topics and the hierarchical relationship among topics, which is conducive to analysis the subsequent research on theme retrieval and theme evolution. At the same time, network platform users and managers can obtain topic distribution information in a systematic and centralized manner. It is of great significance to guide the network's public sentiment and create a good network public opinion environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽绒完成签到,获得积分10
刚刚
酷波er应助Rhenium采纳,获得10
刚刚
bin_yao发布了新的文献求助10
1秒前
shego发布了新的文献求助10
1秒前
科研通AI6.1应助虚幻德地采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
momo发布了新的文献求助10
2秒前
李爱国应助轻轻张采纳,获得10
2秒前
2秒前
ddw发布了新的文献求助10
3秒前
orixero应助当年明月采纳,获得10
3秒前
3秒前
qqq完成签到,获得积分10
3秒前
3秒前
科研通AI6.1应助wang采纳,获得30
3秒前
清爽老九发布了新的文献求助30
4秒前
Accpted河豚发布了新的文献求助10
4秒前
4秒前
JamesPei应助外向的梦安采纳,获得10
4秒前
Karma发布了新的文献求助10
6秒前
shunshun51213完成签到,获得积分10
6秒前
6秒前
所所应助你怎么睡得着觉采纳,获得10
6秒前
领导范儿应助多金多金采纳,获得10
7秒前
小文完成签到,获得积分10
7秒前
RAFA发布了新的文献求助10
8秒前
bin_yao完成签到,获得积分10
8秒前
8秒前
xr发布了新的文献求助10
8秒前
李子恒发布了新的文献求助10
8秒前
寒生完成签到,获得积分10
9秒前
黄雨淋完成签到,获得积分10
10秒前
DuanYou完成签到,获得积分10
10秒前
11秒前
Criminology34应助ccc采纳,获得10
11秒前
大模型应助謓言采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
无奈的晴发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049