已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice

无线电技术 磁共振成像 医学 肉瘤 分割 放射基因组学 放射科 卷积神经网络 核医学 病理 人工智能 计算机科学
作者
Matthew Holbrook,Stephanie J. Blocker,Yvonne M. Mowery,Alexandra Badea,Yi Qi,Eric S. Xu,David G. Kirsch,G. Allan Johnson,Cristian T. Badea
出处
期刊:Tomography [MDPI AG]
卷期号:6 (1): 23-33 被引量:26
标识
DOI:10.18383/j.tom.2019.00021
摘要

Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
bkagyin应助wq采纳,获得10
4秒前
liangxiao发布了新的文献求助150
6秒前
kingwill应助燃之一手采纳,获得20
6秒前
8秒前
present发布了新的文献求助10
8秒前
桐桐应助飞一般的亮哥采纳,获得10
8秒前
raycee发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI5应助是漏漏呀采纳,获得10
15秒前
科研通AI5应助花花采纳,获得10
15秒前
present完成签到,获得积分10
16秒前
辉hui发布了新的文献求助10
16秒前
聪慧寄凡发布了新的文献求助10
17秒前
18秒前
淡定的大船完成签到,获得积分10
18秒前
小徐完成签到,获得积分10
19秒前
20秒前
科目三应助唐山夕采纳,获得30
21秒前
22完成签到 ,获得积分20
21秒前
Quanquan完成签到 ,获得积分10
23秒前
23秒前
CodeCraft应助ZSM911采纳,获得10
25秒前
26秒前
是漏漏呀发布了新的文献求助10
26秒前
26秒前
sheldon发布了新的文献求助10
28秒前
28秒前
小蘑菇应助聪慧寄凡采纳,获得10
29秒前
以菱完成签到 ,获得积分10
29秒前
烤地瓜完成签到,获得积分10
30秒前
NexusExplorer应助SAS采纳,获得10
30秒前
无情的葡萄完成签到,获得积分10
31秒前
31秒前
31秒前
31秒前
大喜子给大喜子的求助进行了留言
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009