微流控
微加工
功能(生物学)
人类疾病
疾病
芯片上器官
计算机科学
计算生物学
纳米技术
细胞外基质
神经科学
组织工程
生物
生物信息学
医学
病理
生物医学工程
细胞生物学
材料科学
制作
替代医学
作者
Elizabeth L Doherty,Wen Aw,Anthony Hickey,William J. Polacheck
标识
DOI:10.3389/fbioe.2021.624435
摘要
Over the past decade, advances in microfabrication and biomaterials have facilitated the development of microfluidic tissue and organ models to address challenges with conventional animal and cell culture systems. These systems have largely been developed for human disease modeling and preclinical drug development and have been increasingly used to understand cellular and molecular mechanisms, particularly in the cardiovascular system where the characteristic mechanics and architecture are difficult to recapitulate in traditional systems. Here, we review recent microfluidic approaches to model the cardiovascular system and novel insights provided by these systems. Key features of microfluidic approaches include the ability to pattern cells and extracellular matrix (ECM) at cellular length scales and the ability to use patient-derived cells. We focus the review on approaches that have leveraged these features to explore the relationship between genetic mutations and the microenvironment in cardiovascular disease progression. Additionally, we discuss limitations and benefits of the various approaches, and conclude by considering the role further advances in microfabrication technology and biochemistry techniques play in establishing microfluidic cardiovascular disease models as central tools for understanding biological mechanisms and for developing interventional strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI