A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models

机械生物学 微流控 生物物理学 材料科学 细胞骨架 芯片上器官 纳米技术 细胞生物学 体外 细胞 粘液 剪应力 化学 生物 复合材料 生物化学 生态学
作者
Ludivine Delon,Zhaobin Guo,Anna Oszmiana,Chia‐Chi Chien,Rachel Gibson,Clive A. Prestidge,Benjamin Thierry
出处
期刊:Biomaterials [Elsevier]
卷期号:225: 119521-119521 被引量:134
标识
DOI:10.1016/j.biomaterials.2019.119521
摘要

Epithelial cells experience constant mechanical forces, including fluid shear stress (FSS) on their apical surface. These forces alter both structure and function. While precise recapitulation of the complex mechanobiology of organs remains challenging, better understanding of the effect of mechanical stimuli is necessary towards the development of biorelevant in vitro models. This is especially relevant to organs-on-chip models which allow for fine control of the culture environment. In this study, the effects of the FSS on Caco-2 cell monolayers were systematically determined using a microfluidic device based on Hele-Shaw geometry. This approach allowed for a physiologically relevant range of FSS (from ∼0 to 0.03 dyn/cm2) to be applied to the cells within a single device. Exposure to microfluidic FSS induced significant phenotypical and functional changes in Caco-2 cell monolayers as compared to cells grown in static conditions. The application of FSS significantly altered the production of mucus, expression of tight junctions, vacuolization, organization of cytoskeleton, formation of microvilli, mitochondrial activity and expression of cytochrome P450. In the context of the intestinal epithelium, this detailed understanding of the effects of the FSS will enable the realization of in vitro organs-on-chip models with well-defined and tailored characteristics to a specific purpose, including for drug and nanoparticle absorption studies. The Hele-Shaw approach used in this study could be readily applied to other cell types and adapted for a wide range of physiologically relevant FSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助早日毕业采纳,获得30
刚刚
微笑的人形立牌完成签到,获得积分10
1秒前
1秒前
小菜熊ya完成签到,获得积分20
1秒前
AAAAAAAAAAA完成签到,获得积分10
2秒前
2秒前
HY完成签到,获得积分20
2秒前
3秒前
3秒前
礼岁岁完成签到 ,获得积分10
3秒前
甜蜜笑阳完成签到,获得积分10
4秒前
song完成签到,获得积分20
5秒前
孤独的凌翠给孤独的凌翠的求助进行了留言
5秒前
yuani111应助小木木壮采纳,获得10
7秒前
OIIII发布了新的文献求助10
7秒前
Owen应助优雅惜雪采纳,获得10
7秒前
zjy完成签到,获得积分10
8秒前
8秒前
geold发布了新的文献求助10
9秒前
海鸥别叫了完成签到 ,获得积分10
10秒前
标致白晴发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
无花果应助詹姆斯采纳,获得10
15秒前
15秒前
hailicy发布了新的文献求助10
16秒前
贾哲宇发布了新的文献求助20
17秒前
SuShuo发布了新的文献求助10
18秒前
Ava应助LALALA卫卫J采纳,获得10
19秒前
李健应助123456采纳,获得10
19秒前
19秒前
20秒前
优雅惜雪发布了新的文献求助10
20秒前
纔比完成签到 ,获得积分10
21秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481