A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models

机械生物学 微流控 生物物理学 材料科学 细胞骨架 芯片上器官 纳米技术 细胞生物学 体外 细胞 粘液 剪应力 化学 生物 复合材料 生物化学 生态学
作者
Ludivine Delon,Zhaobin Guo,Anna Oszmiana,Chia‐Chi Chien,Rachel Gibson,Clive A. Prestidge,Benjamin Thierry
出处
期刊:Biomaterials [Elsevier BV]
卷期号:225: 119521-119521 被引量:146
标识
DOI:10.1016/j.biomaterials.2019.119521
摘要

Epithelial cells experience constant mechanical forces, including fluid shear stress (FSS) on their apical surface. These forces alter both structure and function. While precise recapitulation of the complex mechanobiology of organs remains challenging, better understanding of the effect of mechanical stimuli is necessary towards the development of biorelevant in vitro models. This is especially relevant to organs-on-chip models which allow for fine control of the culture environment. In this study, the effects of the FSS on Caco-2 cell monolayers were systematically determined using a microfluidic device based on Hele-Shaw geometry. This approach allowed for a physiologically relevant range of FSS (from ∼0 to 0.03 dyn/cm2) to be applied to the cells within a single device. Exposure to microfluidic FSS induced significant phenotypical and functional changes in Caco-2 cell monolayers as compared to cells grown in static conditions. The application of FSS significantly altered the production of mucus, expression of tight junctions, vacuolization, organization of cytoskeleton, formation of microvilli, mitochondrial activity and expression of cytochrome P450. In the context of the intestinal epithelium, this detailed understanding of the effects of the FSS will enable the realization of in vitro organs-on-chip models with well-defined and tailored characteristics to a specific purpose, including for drug and nanoparticle absorption studies. The Hele-Shaw approach used in this study could be readily applied to other cell types and adapted for a wide range of physiologically relevant FSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左右完成签到,获得积分10
1秒前
eason完成签到,获得积分10
2秒前
科研通AI5应助li采纳,获得10
2秒前
Jasper完成签到,获得积分10
2秒前
暗中讨饭完成签到,获得积分10
3秒前
唐新新发布了新的文献求助10
3秒前
小周周完成签到,获得积分10
3秒前
3秒前
berg发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
小轩完成签到,获得积分10
6秒前
8秒前
您好完成签到,获得积分20
8秒前
9秒前
夏日发布了新的文献求助30
9秒前
闪电小子发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
无花果应助唐新新采纳,获得10
11秒前
11秒前
12秒前
安徒完成签到,获得积分10
12秒前
13秒前
飞雪含笑发布了新的文献求助10
13秒前
Zhang完成签到,获得积分10
15秒前
LiXiaomeng发布了新的文献求助10
15秒前
16秒前
123发布了新的文献求助10
16秒前
16秒前
搜集达人应助李狗蛋采纳,获得10
17秒前
17秒前
闪电小子完成签到,获得积分10
18秒前
18秒前
18秒前
Felix完成签到,获得积分10
20秒前
小青椒应助mdd采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991412
求助须知:如何正确求助?哪些是违规求助? 4239905
关于积分的说明 13208671
捐赠科研通 4034805
什么是DOI,文献DOI怎么找? 2207529
邀请新用户注册赠送积分活动 1218522
关于科研通互助平台的介绍 1136959