钙钛矿(结构)
碘化物
卤化物
图层(电子)
计算机科学
材料科学
降级(电信)
理论(学习稳定性)
氢键
化学工程
异质结
溴化物
分子
纳米技术
化学
无机化学
光电子学
有机化学
机器学习
电信
工程类
作者
Noor Titan Putri Hartono,Janak Thapa,Armi Tiihonen,Felipe Oviedo,Clio Batali,Jason J. Yoo,Zhe Liu,Ruipeng Li,David Fuertes Marrón,Moungi G. Bawendi,Tonio Buonassisi,Shijing Sun
标识
DOI:10.1038/s41467-020-17945-4
摘要
Abstract Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto methylammonium lead iodide (MAPbI 3 ) films, age them under accelerated conditions, and determine features governing stability using supervised machine learning and Shapley values. We find that organic molecules’ low number of hydrogen-bonding donors and small topological polar surface area correlate with increased MAPbI 3 film stability. The top performing organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI 3 stability lifetime by 4 ± 2 times over bare MAPbI 3 and 1.3 ± 0.3 times over state-of-the-art octylammonium bromide (OABr). Through characterization, we find that this capping layer stabilizes the photoactive layer by changing the surface chemistry and suppressing methylammonium loss.
科研通智能强力驱动
Strongly Powered by AbleSci AI