Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation.

计算机科学 重症监护 预测建模 2019年冠状病毒病(COVID-19) 急诊医学
作者
Pan Pan,Yichao Li,Yongjiu Xiao,Bingchao Han,Longxiang Su,Mingliang Su,Yansheng Li,Siqi Zhang,Dapeng Jiang,Xia Chen,Fuquan Zhou,Ling Ma,Pengtao Bao,Lixin Xie
出处
期刊:Journal of Medical Internet Research 卷期号:22 (11) 被引量:21
标识
DOI:10.2196/23128
摘要

Background: Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. Objective: The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. Methods: In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. Results: Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. Conclusions: The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之外完成签到 ,获得积分10
刚刚
1秒前
风中作画发布了新的文献求助10
3秒前
manchang完成签到 ,获得积分10
3秒前
3秒前
橘子汽水关注了科研通微信公众号
3秒前
xwl发布了新的文献求助10
5秒前
科研虫发布了新的文献求助10
6秒前
6秒前
11发布了新的文献求助10
6秒前
小彻发布了新的文献求助10
7秒前
香蕉觅云应助等待书雪采纳,获得10
7秒前
羽6发布了新的文献求助10
9秒前
传奇3应助榴下晨光采纳,获得10
10秒前
李健应助wkwkkwk采纳,获得10
11秒前
研友_VZG7GZ应助自觉的山河采纳,获得10
11秒前
at关注了科研通微信公众号
12秒前
复杂念梦发布了新的文献求助10
12秒前
momo完成签到 ,获得积分10
13秒前
小彻完成签到,获得积分10
13秒前
顶顶小明完成签到,获得积分10
15秒前
研友_VZG7GZ应助辣椒面采纳,获得10
15秒前
史道夫发布了新的文献求助10
15秒前
小魏完成签到 ,获得积分10
16秒前
17秒前
fire_tu发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
22秒前
gaochunjing发布了新的文献求助10
23秒前
wkwkkwk发布了新的文献求助10
24秒前
25秒前
榴下晨光发布了新的文献求助10
25秒前
25秒前
26秒前
caq发布了新的文献求助10
27秒前
SpongeBob发布了新的文献求助10
27秒前
27秒前
fifteen发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153522
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861275
捐赠科研通 2462658
什么是DOI,文献DOI怎么找? 1310909
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809