Antithrombin III Contributes to the Protective Effects of Fresh Frozen Plasma Following Hemorrhagic Shock by Preventing Syndecan-1 Shedding and Endothelial Barrier Disruption
ABSTRACT Background: Endothelial dysfunction during hemorrhagic shock (HS) is associated with loss of cell-associated syndecan-1 (Sdc1) and hyperpermeability. Fresh frozen plasma (FFP) preserves Sdc1 and reduces permeability following HS, although the key mediators remain unknown. Antithrombin III (ATIII) is a plasma protein with potent anti-inflammatory and endothelial protective activity. We hypothesized that the protective effects of FFP on endothelial Sdc1 and permeability are mediated, in part, through ATIII. Methods: ATIII and Sdc1 were measured in severely injured patients upon admission (N = 125) and hospital day 3 (N = 90) for correlation analysis. In vitro effects of ATIII on human lung microvascular endothelial cells (HLMVECs) were determined by pretreating cells with vehicle, FFP, ATIII-deficient FFP, or purified ATIII followed by TNFα stimulation. Sdc1 expression was measured by immunostaining and permeability by electrical impedance. To determine the role of ATIII in vivo , male mice were subjected to a fixed pressure exsanguination model of HS, followed by resuscitation with FFP, ATIII-deficient FFP, or ATIII-deficient FFP with ATIII repletion. Lung Sdc1 expression was assessed by immunostaining. Results: Pearson correlation analysis showed a significant negative correlation between plasma levels of Sdc1 and ATIII (R = −0.62; P < 0.0001) in injured patients on hospital day 3. Also, i n vitro , FFP and ATIII prevented TNFα-induced permeability ( P < 0.05 vs TNFα) in HLMVECs. ATIII-deficient FFP had no effect; however, ATIII restoration reestablished its protective effects in a dose-dependent manner. Similarly, FFP and ATIII prevented TNFα-induced Sdc1 shedding in HLMVECs; however, ATIII-deficient FFP did not. In mice, Sdc1 expression was increased following FFP resuscitation (1.7 ± 0.5, P < 0.01) vs. HS alone (1.0 ± 0.3); however, no improvement was seen following ATIII-deficient FFP treatment (1.3 ± 0.4, P = 0.3). ATIII restoration improved Sdc1 expression (1.5 ± 0.9, P < 0.05) similar to that of FFP resuscitation. Conclusions: ATIII plays a role in FFP-mediated protection of endothelial Sdc1 expression and barrier function, making it a potential therapeutic target to mitigate HS-induced endothelial dysfunction. Further studies are needed to elucidate the mechanisms by which ATIII protects the endothelium.