Group Sampling for Scale Invariant Face Detection

人工智能 计算机科学 目标检测 模式识别(心理学) 特征(语言学) 特征提取 面子(社会学概念) 比例(比率) 探测器 人脸检测 深度学习 计算机视觉 不变(物理) 图像分辨率 面部识别系统 数学 地图学 电信 哲学 社会学 语言学 数学物理 地理 社会科学
作者
Ming Xiang,Fangyun Wei,Ting Zhang,Dong Chen,Nanning Zheng,Fang Wen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 985-1001 被引量:14
标识
DOI:10.1109/tpami.2020.3012414
摘要

Detectors based on deep learning tend to detect multi-scale objects on a single input image for efficiency. Recent works, such as FPN and SSD, generally use feature maps from multiple layers with different spatial resolutions to detect objects at different scales, e.g., high-resolution feature maps for small objects. However, we find that objects at all scales can also be well detected with features from a single layer of the network. In this paper, we carefully examine the factors affecting detection performance across a large range of scales, and conclude that the balance of training samples, including both positive and negative ones, at different scales is the key. We propose a group sampling method which divides the anchors into several groups according to the scale, and ensure that the number of samples for each group is the same during training. Our approach using only one single layer of FPN as features is able to advance the state-of-the-arts. Comprehensive analysis and extensive experiments have been conducted to show the effectiveness of the proposed method. Moreover, we show that our approach is favorably applicable to other tasks, such as object detection on COCO dataset, and to other detection pipelines, such as YOLOv3, SSD and R-FCN. Our approach, evaluated on face detection benchmarks including FDDB and WIDER FACE datasets, achieves state-of-the-art results without bells and whistles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助通~采纳,获得10
1秒前
2秒前
尘林发布了新的文献求助30
2秒前
NexusExplorer应助科科研研up采纳,获得10
3秒前
大模型应助我要发十篇sci采纳,获得10
3秒前
正直草丛发布了新的文献求助10
4秒前
小蘑菇应助zxy采纳,获得20
4秒前
李爱国应助xs采纳,获得10
5秒前
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
大有阳光应助科研通管家采纳,获得10
6秒前
quhayley应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
zh完成签到,获得积分10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
ZongzongXu发布了新的文献求助10
7秒前
8秒前
十七关注了科研通微信公众号
8秒前
chenyunxia应助通~采纳,获得10
8秒前
卓越完成签到,获得积分10
9秒前
yesand...完成签到,获得积分10
9秒前
啦啦啦关注了科研通微信公众号
9秒前
jiuyuan发布了新的文献求助10
9秒前
蔚岚影落完成签到,获得积分10
10秒前
小冥童鞋发布了新的文献求助10
10秒前
张张完成签到,获得积分10
10秒前
benben应助萤火虫采纳,获得10
10秒前
11秒前
12秒前
结实问筠完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919