Global anthropogenic CO<sub>2</sub> emissions and uncertainties as prior for Earth system modelling and data assimilation

环境科学 温室气体 气候变化 气象学 排放清单 地球系统科学 大气科学 地理 空气质量指数 生态学 生物 地质学
作者
Margarita Choulga,Greet Janssens‐Maenhout,Ingrid Super,Anna Agustí‐Panareda,Gianpaolo Balsamo,Nicolas Bousserez,Monica Crippa,Hugo Denier van der Gon,Richard Engelen,Diego Guizzardi,Jeroen Kuenen,Joe McNorton,Gabriel Oreggioni,Efisio Solazzo,Antoon Visschedijk
标识
DOI:10.5194/essd-2020-68
摘要

Abstract. Anthropogenic carbon dioxide (CO2) emissions and their observed growing trends raise awareness in scientific, political and public sectors of the society as the major driver of climate-change. For an increased understanding of the CO2 emission sources, patterns and trends, a link between the emission inventories and observed CO2 concentrations is best established via Earth system modelling and data assimilation. In this study anthropogenic CO2 emission inventories are processed into gridded maps to provide an estimate of prior CO2 emissions for 7 main emissions groups: 1) power generation super-emitters and 2) energy production average-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) transport and 7) others, with estimation of their uncertainty and covariance to be included in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The emission inventories are sourced from the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories and revised information from its 2019 Refinements, and the global grid-maps of Emissions Database for Global Atmospheric Research (EDGAR) inventory. The anthropogenic CO2 emissions for 2012 and 2015, (EDGAR versions 4.3.2 and 4.3.2_FT2015 respectively) are considered, updated with improved apportionment of the energy sector, energy usage for manufacturing and diffusive CO2 emissions from coal mines. These emissions aggregated into 7 ECMWF groups with their emission uncertainties are calculated per country considering its statistical infrastructure development level and sector considering the most typical fuel type and use the IPCC recommended error propagation method assuming fully uncorrelated emissions to generate covariance matrices of parsimonious dimension (7×7). While the uncertainty of most groups remains relatively small, the largest contribution to the total uncertainty is determined by the group with usually the smallest budget, consisting of oil refineries and transformation industry, fuel exploitation, coal production, agricultural soils and solvents and products use emissions. Several sensitivity studies are performed: for country type (with well-/less well-developed statistical infrastructure), for fuel type specification, and for national emission source distribution (highlights the importance of 30 accurate point source mapping). Uncertainties are compared with United Nations Framework Convention on Climate Change (UNFCCC) and the Netherlands Organisation for Applied Scientific Research (TNO) data. Upgraded anthropogenic CO2 emission maps with their yearly and monthly uncertainties are combined into the CHE_EDGAR-ECMWF_2015 dataset (Choulga et al., 2020) available from https://doi.org/10.5281/zenodo.3712339.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
gpy应助呵呵呵呵采纳,获得10
1秒前
科研完成签到,获得积分10
2秒前
科研通AI2S应助飞快的尔蓝采纳,获得10
2秒前
斯文败类应助飞快的尔蓝采纳,获得10
2秒前
3秒前
一一应助稳重的蛟凤采纳,获得20
3秒前
xiaole完成签到,获得积分10
4秒前
6666666666发布了新的文献求助20
4秒前
4秒前
DWDD发布了新的文献求助10
4秒前
成龙王发布了新的文献求助10
5秒前
BowieHuang应助颖颖采纳,获得10
5秒前
科研通AI6.1应助jingle采纳,获得10
5秒前
5秒前
6秒前
sswbzh给好运偏爱的那个男的的求助进行了留言
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
坚定的雁完成签到 ,获得积分10
8秒前
8秒前
Sun1c7发布了新的文献求助10
8秒前
9秒前
9秒前
邢丹丹发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
勤恳的鹰发布了新的文献求助10
12秒前
小丸子发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
不安乐曲发布了新的文献求助10
13秒前
BowieHuang应助啵啵采纳,获得10
13秒前
14秒前
CodeCraft应助千里采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933