Global anthropogenic CO<sub>2</sub> emissions and uncertainties as prior for Earth system modelling and data assimilation

环境科学 温室气体 气候变化 气象学 排放清单 地球系统科学 大气科学 地理 空气质量指数 生态学 生物 地质学
作者
Margarita Choulga,Greet Janssens‐Maenhout,Ingrid Super,Anna Agustí‐Panareda,Gianpaolo Balsamo,Nicolas Bousserez,Monica Crippa,Hugo Denier van der Gon,Richard Engelen,Diego Guizzardi,Jeroen Kuenen,Joe McNorton,Gabriel Oreggioni,Efisio Solazzo,Antoon Visschedijk
标识
DOI:10.5194/essd-2020-68
摘要

Abstract. Anthropogenic carbon dioxide (CO2) emissions and their observed growing trends raise awareness in scientific, political and public sectors of the society as the major driver of climate-change. For an increased understanding of the CO2 emission sources, patterns and trends, a link between the emission inventories and observed CO2 concentrations is best established via Earth system modelling and data assimilation. In this study anthropogenic CO2 emission inventories are processed into gridded maps to provide an estimate of prior CO2 emissions for 7 main emissions groups: 1) power generation super-emitters and 2) energy production average-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) transport and 7) others, with estimation of their uncertainty and covariance to be included in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The emission inventories are sourced from the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories and revised information from its 2019 Refinements, and the global grid-maps of Emissions Database for Global Atmospheric Research (EDGAR) inventory. The anthropogenic CO2 emissions for 2012 and 2015, (EDGAR versions 4.3.2 and 4.3.2_FT2015 respectively) are considered, updated with improved apportionment of the energy sector, energy usage for manufacturing and diffusive CO2 emissions from coal mines. These emissions aggregated into 7 ECMWF groups with their emission uncertainties are calculated per country considering its statistical infrastructure development level and sector considering the most typical fuel type and use the IPCC recommended error propagation method assuming fully uncorrelated emissions to generate covariance matrices of parsimonious dimension (7×7). While the uncertainty of most groups remains relatively small, the largest contribution to the total uncertainty is determined by the group with usually the smallest budget, consisting of oil refineries and transformation industry, fuel exploitation, coal production, agricultural soils and solvents and products use emissions. Several sensitivity studies are performed: for country type (with well-/less well-developed statistical infrastructure), for fuel type specification, and for national emission source distribution (highlights the importance of 30 accurate point source mapping). Uncertainties are compared with United Nations Framework Convention on Climate Change (UNFCCC) and the Netherlands Organisation for Applied Scientific Research (TNO) data. Upgraded anthropogenic CO2 emission maps with their yearly and monthly uncertainties are combined into the CHE_EDGAR-ECMWF_2015 dataset (Choulga et al., 2020) available from https://doi.org/10.5281/zenodo.3712339.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
B站萧亚轩发布了新的文献求助10
刚刚
Akim应助mono采纳,获得10
1秒前
1秒前
轻松的语海完成签到,获得积分10
1秒前
十一完成签到,获得积分10
3秒前
Jack发布了新的文献求助10
3秒前
香蕉觅云应助wsqg123采纳,获得10
3秒前
甜甜玫瑰发布了新的文献求助10
3秒前
3秒前
4秒前
受伤坤关注了科研通微信公众号
4秒前
4秒前
4秒前
luoshiyi发布了新的文献求助10
5秒前
bkagyin应助liminliminlimin采纳,获得30
5秒前
Mida应助温暖的子骞采纳,获得10
5秒前
wxh发布了新的文献求助20
5秒前
英俊的铭应助再学一分钟采纳,获得10
6秒前
科目三应助jogrgr采纳,获得20
6秒前
adolph完成签到,获得积分10
6秒前
窝窝头完成签到,获得积分10
6秒前
飞快的惜芹完成签到,获得积分10
7秒前
称心不尤完成签到,获得积分10
8秒前
小耳朵发布了新的文献求助10
9秒前
9秒前
thousandlong发布了新的文献求助10
9秒前
淅淅沥沥发布了新的文献求助10
10秒前
!!!发布了新的文献求助10
10秒前
11秒前
11秒前
白潇潇完成签到 ,获得积分10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
小小油应助科研通管家采纳,获得50
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
wy.he应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
13秒前
JamesPei应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905