Hyperspectral Image Classification Based on 3-D Octave Convolution With Spatial–Spectral Attention Network

高光谱成像 计算机科学 判别式 人工智能 倍频程(电子) 模式识别(心理学) 补语(音乐) 光谱带 卷积(计算机科学) 遥感 空间分析 人工神经网络 物理 光学 地理 互补 生物化学 化学 基因 表型
作者
Xu Tang,Fanbo Meng,Xiangrong Zhang,Yiu‐ming Cheung,Jingjing Ma,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 2430-2447 被引量:119
标识
DOI:10.1109/tgrs.2020.3005431
摘要

In recent years, with the development of deep learning (DL), the hyperspectral image (HSI) classification methods based on DL have shown superior performance. Although these DL-based methods have great successes, there is still room to improve their ability to explore spatial-spectral information. In this article, we propose a 3-D octave convolution with the spatial-spectral attention network (3DOC-SSAN) to capture discriminative spatial-spectral features for the classification of HSIs. Especially, we first extend the octave convolution model using 3-D convolution, namely, a 3-D octave convolution model (3D-OCM), in which four 3-D octave convolution blocks are combined to capture spatial-spectral features from HSIs. Not only the spatial information can be mined deeply from the high- and low-frequency aspects but also the spectral information can be taken into account by our 3D-OCM. Second, we introduce two attention models from spatial and spectral dimensions to highlight the important spatial areas and specific spectral bands that consist of significant information for the classification tasks. Finally, in order to integrate spatial and spectral information, we design an information complement model to transmit important information between spatial and spectral attention features. Through the information complement model, the beneficial parts of spatial and spectral attention features for the classification tasks can be fully utilized. Comparing with several existing popular classifiers, our proposed method can achieve competitive performance on four benchmark data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屋子完成签到,获得积分10
1秒前
sommer12345发布了新的文献求助10
1秒前
1秒前
2秒前
流岚雾霭发布了新的文献求助10
2秒前
3秒前
tangtang完成签到 ,获得积分10
3秒前
COCA完成签到,获得积分10
3秒前
sword完成签到,获得积分10
3秒前
小二郎应助nicky采纳,获得10
4秒前
紫津完成签到 ,获得积分10
4秒前
呆萌的鼠标完成签到 ,获得积分0
4秒前
丘比特应助Yolo采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
anny2022发布了新的文献求助30
6秒前
范三爷完成签到 ,获得积分10
7秒前
7秒前
啦啦啦123完成签到,获得积分10
7秒前
CYX发布了新的文献求助10
7秒前
7秒前
7秒前
小卫完成签到,获得积分10
8秒前
奋斗蜗牛完成签到,获得积分10
8秒前
拼搏绿柳完成签到,获得积分10
8秒前
鑫xx完成签到 ,获得积分10
8秒前
xiaoxue发布了新的文献求助10
9秒前
小蘑菇应助A溶大美噶采纳,获得10
9秒前
劲秉应助666采纳,获得20
9秒前
辛勤凌旋发布了新的文献求助10
10秒前
10秒前
10秒前
sally完成签到,获得积分10
10秒前
三千年的成长完成签到 ,获得积分10
10秒前
11秒前
Liiyaa完成签到,获得积分10
12秒前
领导范儿应助侯新宇采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729540
求助须知:如何正确求助?哪些是违规求助? 3274597
关于积分的说明 9987208
捐赠科研通 2989862
什么是DOI,文献DOI怎么找? 1640784
邀请新用户注册赠送积分活动 779381
科研通“疑难数据库(出版商)”最低求助积分说明 748198