A Generic Quality Control Framework for Fetal Ultrasound Cardiac Four-Chamber Planes

人工智能 计算机科学 缩放 计算机视觉 残余物 模式识别(心理学) 图像质量 算法 图像(数学) 镜头(地质) 石油工程 工程类
作者
Jinbao Dong,Shengfeng Liu,Yimei Liao,Huaxuan Wen,Baiying Lei,Shengli Li,Tianfu Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 931-942 被引量:65
标识
DOI:10.1109/jbhi.2019.2948316
摘要

Quality control/assessment of ultrasound (US) images is an essential step in clinical diagnosis. This process is usually done manually, suffering from some drawbacks, such as dependence on operator's experience and extensive labors, as well as high inter- and intra-observer variation. Automatic quality assessment of US images is therefore highly desirable. Fetal US cardiac four-chamber plane (CFP) is one of the most commonly used cardiac views, which was used in the diagnosis of heart anomalies in the early 1980s. In this paper, we propose a generic deep learning framework for automatic quality control of fetal US CFPs. The proposed framework consists of three networks: (1) a basic CNN (B-CNN), roughly classifying four-chamber views from the raw data; (2) a deeper CNN (D-CNN), determining the gain and zoom of the target images in a multi-task learning manner; and (3) the aggregated residual visual block net (ARVBNet), detecting the key anatomical structures on a plane. Based on the output of the three networks, overall quantitative score of each CFP is obtained, so as to achieve fully automatic quality control. Experiments on a fetal US dataset demonstrated our proposed method achieved a highest mean average precision (mAP) of 93.52% at a fast speed of 101 frames per second (FPS). In order to demonstrate the adaptability and generalization capacity, the proposed detection network (i.e., ARVBNet) has also been validated on the PASCAL VOC dataset, obtaining a highest mAP of 81.2% when input size is approximately 300 × 300.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助sunzhiyu233采纳,获得10
刚刚
Sherwin完成签到,获得积分10
刚刚
羽毛完成签到,获得积分20
1秒前
xiongjian发布了新的文献求助10
1秒前
一方通行完成签到 ,获得积分10
1秒前
1秒前
monster0101完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
Stvn完成签到,获得积分20
3秒前
核桃发布了新的文献求助10
3秒前
跳跃的太阳完成签到,获得积分10
4秒前
4秒前
enoot完成签到,获得积分10
4秒前
dalin完成签到,获得积分10
4秒前
YE发布了新的文献求助10
4秒前
buno应助外向的沅采纳,获得10
4秒前
体贴啤酒发布了新的文献求助10
5秒前
花痴的谷雪完成签到,获得积分10
5秒前
5秒前
圈圈发布了新的文献求助10
5秒前
亮亮完成签到,获得积分10
5秒前
没有稗子完成签到 ,获得积分10
5秒前
科研小民工应助明亮的斩采纳,获得30
5秒前
6秒前
6秒前
小可发布了新的文献求助10
6秒前
莽哥完成签到,获得积分10
6秒前
小邢一定行完成签到,获得积分10
6秒前
6秒前
叶飞荷发布了新的文献求助10
6秒前
明月清风完成签到,获得积分10
6秒前
Ymj发布了新的文献求助10
6秒前
6秒前
诗谙发布了新的文献求助10
7秒前
屁王发布了新的文献求助10
7秒前
Eric完成签到,获得积分10
7秒前
7秒前
柒柒完成签到,获得积分20
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740