熊果酸
体内
化学
胆固醇
生物化学
代谢物
脂质代谢
代谢组学
药理学
生物
色谱法
生物技术
作者
Xiaoyao Ma,Yongping Bai,Kaixin Liu,Yiman Han,Jinling Zhang,Yuteng Liu,Xiaotao Hou,Erwei Hao,Yuanyuan Hou,Gang Bai
出处
期刊:Phytomedicine
[Elsevier]
日期:2022-06-01
卷期号:103: 154233-154233
被引量:18
标识
DOI:10.1016/j.phymed.2022.154233
摘要
In hypercholesteremia, the concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are enhanced in serum, which is strongly associated with an increased risk of developing atherosclerosis. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, was found to alleviate hypercholesterolemia and hypercholesterolemia-induced cardiovascular disease. However, the specific targets and molecular mechanisms related to the effects of UA in reducing cholesterol have not been elucidated. In this study, we aimed to illustrate the target of UA in the treatment of hypercholesterolemia and to reveal its underlying molecular mechanism. Nontargeted metabolomics was conducted to analyze the metabolites and related pathways that UA affected in vivo. The main lipid metabolism targets of UA were analyzed by target fishing and fluorescence colocalization in mouse liver. Molecular docking, in-gel fluorescence scan and thermal shift were assessed to further investigate the binding site of the UA metabolite with HMGCS1. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks to induce hypercholesteremia. Liver tissues were used to verify the cholesterol-lowering molecular mechanism of UA by targeted metabolomics, serum was used to detect biochemical indices, and the entire aorta was used to analyze the formation of atherosclerotic lesions. Our results showed that hydroxy‑3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) was the primary lipid metabolism target protein of UA. The UA metabolite epoxy-modified UA irreversibly bonds with the thiol of Cys-129 in HMGCS1, which inhibits the catalytic activity of HMGCS1 and reduces the generation of precursors in cholesterol biosynthesis in vivo. The contents of TC and LDL-C in serum and the formation of the atherosclerotic area in the entire aorta were markedly reduced with UA treatment in Diet-induced hypercholesteremia mice. UA inhibits the catalytic activity of HMGCS1, reduces the generation of downstream metabolites in the process of cholesterol biosynthesis and alleviates Diet-induced hypercholesteremia via irreversible binding with HMGCS1 in vivo. It is the first time to clarify the irreversible inhibition mechanism of UA against HMGCS1. This paper provides an increased understanding of UA, particularly regarding the molecular mechanism of the cholesterol-lowering effect, and demonstrates the potential of UA as a novel therapeutic for the treatment of hypercholesteremia.
科研通智能强力驱动
Strongly Powered by AbleSci AI