Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model

人工神经网络 粒子群优化 计算机科学 人工智能 元启发式 过程(计算) 机器学习 算法 操作系统
作者
Nesrine Amor,Muhammad Tayyab Noman,Michal Petrů,Neethu Sebastian
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:18
标识
DOI:10.1038/s41598-022-10406-6
摘要

Abstract This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very first attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shilly完成签到,获得积分10
1秒前
yKkkkkk发布了新的文献求助10
1秒前
xia驳回了xzy998应助
3秒前
吃惊橘子应助手拿大炮采纳,获得10
3秒前
4秒前
爆米花应助Joe采纳,获得10
5秒前
万能图书馆应助huangpeihao采纳,获得10
5秒前
7秒前
7秒前
8秒前
亮lll发布了新的文献求助150
8秒前
10秒前
酷炫皮皮虾完成签到,获得积分10
10秒前
明亮如松完成签到 ,获得积分10
10秒前
wangruiyang完成签到 ,获得积分10
10秒前
高高发布了新的文献求助10
11秒前
细心老姆完成签到,获得积分10
12秒前
brainxue完成签到,获得积分20
12秒前
JamesPei应助六刘采纳,获得10
12秒前
13秒前
13秒前
端庄纸飞机完成签到,获得积分10
14秒前
枝鸮完成签到,获得积分10
14秒前
YCH完成签到,获得积分10
15秒前
15秒前
今后应助三度是冷还是热采纳,获得10
15秒前
风和日丽发布了新的文献求助30
16秒前
Mewo发布了新的文献求助10
16秒前
16秒前
精气被实验吸干完成签到,获得积分10
17秒前
277应助科研通管家采纳,获得10
17秒前
17秒前
Starwalker应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424