高光谱成像
计算机科学
图形
模式识别(心理学)
人工智能
正规化(语言学)
卷积神经网络
理论计算机科学
作者
Haojie Hu,Fang He,Fenggan Zhang,Yao Ding,Xin Wu,Jianwei Zhao,Minli Yao
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:19: 1-5
被引量:8
标识
DOI:10.1109/lgrs.2022.3178708
摘要
Recently, graph convolutional network (GCN) has received more and more interest in the field of hyperspectral image classification (HSIC). The existing GCN-based models for HSIC propagate and aggregate information through the GCN network based on the graph, which is constructed according to spatial location or spectral similarity. However, the constructed graph may not be ideal for the downstream classification task due to the variety of spectral characteristics. In this paper, a fully connected graph is adaptively constructed to make full use of local spatial information and global spectral information. Besides, we apply a neural sparsification technique to remove potentially task-irrelevant edges in case of misleading message propagation. Furthermore, label propagation (LP) serves as regularization to assist the graph network in learning proper edge weights that lead to improved classification performance. The resulting network is end-to-end trainable. The experimental results on three popular benchmarks, including Indian Pines, Pavia University, and Kennedy Space Center, demonstrate the superiority of our algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI