自愈水凝胶
材料科学
生物相容性
纳米技术
标度系数
电磁屏蔽
电磁干扰
聚丙烯酸
纳米纤维素
自愈
纤维素
计算机科学
聚合物
复合材料
化学工程
电信
病理
制作
工程类
高分子化学
冶金
替代医学
医学
作者
Jingjiang Wei,Chenglong Zhu,Zhihui Zeng,Fei Pan,Fuqiang Wan,Liwen Lei,Gustav Nyström,Zhengyi Fu
摘要
Abstract Bioinspired hydrogels are complex materials with distinctive properties comparable to biological tissues. Their exceptional sensitivity to various external stimuli leads to substantial application potential in wearable smart devices. However, these multifaceted hydrogels are often challenging to be combined with pattern customization, stimulus responsiveness, self‐healing, and biocompatibility. Herein, inspired by mussel secretions, a printable, self‐healing, and biocompatible MXene‐based composite hydrogel was designed and prepared by incorporating Ti 3 C 2 T x MXene nanosheets into the hydrogel framework through the chelation of calcium ions (Ca 2+ ) with polyacrylic acid and cellulose nanofibers at alkaline conditions. The biocompatible conductive hydrogel exhibited sensitivity (gauge factor of 2.16), self‐healing (within 1 s), recognition, and adhesion, distinguishing it as an ideal candidate for wearable multifunctional sensors toward strain sensing, vocal sensing, signature detection, and Morse code transmission. Additionally, the multifunctional hydrogel manifested efficient electromagnetic interference shielding properties (reaching more than 30 dB at a thickness of 2.0 mm), protecting electronics and humans from electromagnetic radiation and pollution. Therefore, the presented work represents a versatile strategy for developing environmentally friendly conductive hydrogels, demonstrating the perspectives of intelligent hydrogels for multifunctional applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI