Rationally Designed 2-in-1 Nanoparticles Can Overcome Adaptive Resistance in Cancer

纳米医学 背景(考古学) 癌细胞 癌症 抗药性 细胞毒性T细胞 纳米颗粒 癌症研究 纳米技术 生物 医学 材料科学 体外 内科学 古生物学 生物化学 微生物学
作者
Aaron Goldman,Ashish Kulkarni,Mohammad Kohandel,Prithvi Raj Pandey,Poornima Rao,Siva Kumar Natarajan,Venkata Sabbisetti,Shiladitya Sengupta
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (6): 5823-5834 被引量:67
标识
DOI:10.1021/acsnano.6b00320
摘要

The development of resistance is the major cause of mortality in cancer. Combination chemotherapy is used clinically to reduce the probability of evolution of resistance. A similar trend toward the use of combinations of drugs is also emerging in the application of cancer nanomedicine. However, should a combination of two drugs be delivered from a single nanoparticle or should they be delivered in two different nanoparticles for maximal efficacy? We explored these questions in the context of adaptive resistance, which emerges as a phenotypic response of cancer cells to chemotherapy. We studied the phenotypic dynamics of breast cancer cells under cytotoxic chemotherapeutic stress and analyzed the data using a phenomenological mathematical model. We demonstrate that cancer cells can develop adaptive resistance by entering into a predetermined transitional trajectory that leads to phenocopies of inherently chemoresistant cancer cells. Disrupting this deterministic program requires a unique combination of inhibitors and cytotoxic agents. Using two such combinations, we demonstrate that a 2-in-1 nanomedicine can induce greater antitumor efficacy by ensuring that the origins of adaptive resistance are terminated by deterministic spatially constrained delivery of both drugs to the target cells. In contrast, a combination of free-form drugs or two nanoparticles, each carrying a single payload, is less effective, arising from a stochastic distribution to cells. These findings suggest that 2-in-1 nanomedicines could emerge as an important strategy for targeting adaptive resistance, resulting in increased antitumor efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shunlu发布了新的文献求助30
刚刚
香蕉觅云应助zqq123采纳,获得10
刚刚
Nansen发布了新的文献求助30
刚刚
香蕉觅云应助Accepted采纳,获得10
1秒前
蔡小葵发布了新的文献求助10
1秒前
2秒前
3秒前
Hugt完成签到,获得积分10
4秒前
wuxunxun2015发布了新的文献求助10
4秒前
郭WL完成签到,获得积分10
4秒前
在水一方应助丁傲阳采纳,获得10
5秒前
wangyang完成签到 ,获得积分10
5秒前
1984673171发布了新的文献求助10
5秒前
凉逗听发布了新的文献求助10
5秒前
evan完成签到 ,获得积分10
5秒前
于贩野完成签到,获得积分10
8秒前
郭WL发布了新的文献求助10
8秒前
郭慧梅发布了新的文献求助10
9秒前
善学以致用应助蔡小葵采纳,获得10
9秒前
庄庄发布了新的文献求助10
9秒前
QI发布了新的文献求助10
9秒前
10秒前
小鱼发布了新的文献求助20
10秒前
11秒前
11秒前
小燕完成签到 ,获得积分10
11秒前
12秒前
汉堡包应助华北第一深情采纳,获得10
12秒前
科研通AI2S应助QI采纳,获得10
13秒前
科研通AI5应助xiaoran采纳,获得10
14秒前
上善若水完成签到 ,获得积分10
16秒前
Accepted发布了新的文献求助10
17秒前
酷波er应助怕孤单的思雁采纳,获得10
17秒前
jawa完成签到 ,获得积分10
20秒前
20秒前
21秒前
sukkei应助HaHa007采纳,获得10
22秒前
汉堡包应助zqq123采纳,获得10
22秒前
朝暮发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090