Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches

计算机科学 地质统计学 数据挖掘 变异函数 人工神经网络 数据驱动 随机森林 集成学习 统计
作者
Francky Fouedjio,Jens Klump
出处
期刊:Environmental Earth Sciences [Springer Science+Business Media]
卷期号:78 (1): 1-24 被引量:20
标识
DOI:10.1007/s12665-018-8032-z
摘要

Geostatistical methods such as kriging with external drift (KED) as well as machine learning techniques such as quantile regression forest (QRF) have been extensively used for the modeling and prediction of spatially distributed continuous variables when auxiliary information is available everywhere within the region under study. In addition to providing predictions, both methods are able to deliver a quantification of the uncertainty associated with the prediction. In this paper, kriging with external drift and quantile regression forest are compared with respect to their ability to deliver reliable predictions and prediction uncertainties of spatial data. The comparison is carried out through both synthetic and real-world spatial data. The results indicate that the superiority of KED over QRF can be expected when there is a linear relationship between the variable of interest and auxiliary variables, and the variable of interest shows a strong or weak spatial correlation. In other hand, the superiority of QRF over KED can be expected when there is a non-linear relationship between the variable of interest and auxiliary variables, and the variable of interest exhibits a weak spatial correlation. Moreover, when there is a non-linear relationship between the variable of interest and auxiliary variables, and the variable of interest shows a strong spatial correlation, one can expect QRF outperforms KED in terms of prediction accuracy but not in terms of prediction uncertainty accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
王浩宇关注了科研通微信公众号
2秒前
3秒前
zihanwang应助酷酷海豚采纳,获得10
3秒前
科研狗完成签到,获得积分10
3秒前
4秒前
腾桑发布了新的文献求助10
4秒前
lin完成签到,获得积分20
5秒前
李某某完成签到,获得积分10
5秒前
书亚发布了新的文献求助10
6秒前
东东呀发布了新的文献求助10
7秒前
7秒前
8秒前
Ammon发布了新的文献求助10
9秒前
Www发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
每㐬山风关注了科研通微信公众号
13秒前
WHHW完成签到,获得积分10
13秒前
西西里柠檬发布了新的文献求助100
13秒前
英姑应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
DijiaXu应助科研通管家采纳,获得30
14秒前
彭于彦祖应助科研通管家采纳,获得30
14秒前
今后应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
15秒前
Ren应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得20
15秒前
Ammon完成签到,获得积分10
15秒前
15秒前
15秒前
Liufgui应助科研通管家采纳,获得30
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070