清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches

计算机科学 地质统计学 数据挖掘 变异函数 人工神经网络 数据驱动 随机森林 集成学习 统计
作者
Francky Fouedjio,Jens Klump
出处
期刊:Environmental Earth Sciences [Springer Nature]
卷期号:78 (1): 1-24 被引量:20
标识
DOI:10.1007/s12665-018-8032-z
摘要

Geostatistical methods such as kriging with external drift (KED) as well as machine learning techniques such as quantile regression forest (QRF) have been extensively used for the modeling and prediction of spatially distributed continuous variables when auxiliary information is available everywhere within the region under study. In addition to providing predictions, both methods are able to deliver a quantification of the uncertainty associated with the prediction. In this paper, kriging with external drift and quantile regression forest are compared with respect to their ability to deliver reliable predictions and prediction uncertainties of spatial data. The comparison is carried out through both synthetic and real-world spatial data. The results indicate that the superiority of KED over QRF can be expected when there is a linear relationship between the variable of interest and auxiliary variables, and the variable of interest shows a strong or weak spatial correlation. In other hand, the superiority of QRF over KED can be expected when there is a non-linear relationship between the variable of interest and auxiliary variables, and the variable of interest exhibits a weak spatial correlation. Moreover, when there is a non-linear relationship between the variable of interest and auxiliary variables, and the variable of interest shows a strong spatial correlation, one can expect QRF outperforms KED in terms of prediction accuracy but not in terms of prediction uncertainty accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
vitamin完成签到 ,获得积分10
6秒前
8秒前
10秒前
11秒前
14秒前
陈媛发布了新的文献求助10
15秒前
Jasper应助陈媛采纳,获得10
27秒前
35秒前
jasmine完成签到,获得积分10
39秒前
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
胖头鱼please完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Lorin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176