A mega-analysis of genome-wide association studies for major depressive disorder

重性抑郁障碍 全基因组关联研究 单核苷酸多态性 遗传关联 双相情感障碍 肿瘤科 遗传学 医学 内科学 生物 基因型 基因 扁桃形结构 锂(药物)
作者
Stephan Ripke,Naomi R. Wray,Cathryn M. Lewis,Steven P. Hamilton,Myrna M. Weissman,Gerome Breen,Enda M. Byrne,Douglas Blackwood,Dorret I. Boomsma,Sven Cichon,Andrew C. Heath,Herta Flor,Susanne Lucae,Pamela A. F. Madden,Nicholas G. Martin,Peter McGuffin,Pierandrea Muglia,Markus M. Nöethen,Brenda P Penninx,Michele L. Pergadia,James B. Potash,Marcella Rietschel,D. Y. Lin,Bertram Müller‐Myhsok,Jianxin Shi,Stacy Steinberg,Hans J. Grabe,Paul Lichtenstein,Patrik K. E. Magnusson,Roy H. Perlis,Martin Preisig,Jordan W. Smoller,Kāri Stefánsson,Rudolf Uher,Zoltán Kutalik,Katherine E. Tansey,Alexander Teumer,Alexander Viktorin,Michael R. Barnes,Thomas Bettecken,Elisabeth B. Binder,René Breuer,Víctor M. Castro,Susanne Churchill,William Coryell,Nick Craddock,Ian Craig,Darina Czamara,Eco J. C. de Geus,Franziska Degenhardt,Anne Farmer,Maurizio Fava,Josef Frank,Vivian S. Gainer,Patience Gallagher,Scott D. Gordon,Sergey Goryachev,Magdalena Groß,Michel Guipponi,Anjali K. Henders,Stefan Herms,Ian B. Hickie,Susanne Hoefels,Witte J.G. Hoogendijk,Jouke‐Jan Hottenga,Dan V. Iosifescu,Marcus Ising,Ian D. Jones,Lisa Jones,Tzeng Jung-Ying,James A. Knowles,Isaac S. Kohane,Martin Kohli,Ania Korszun,Mikael Landén,William Lawson,Glyn Lewis,Donald J. MacIntyre,Wolfgang Maier,Manuel Mattheisen,Patrick J. McGrath,Andrew M. McIntosh,Alan McLean,Christel M. Middeldorp,Lefkos Middleton,Grant Montgomery,Shawn N. Murphy,Matthias Nauck,Willem A. Nolen,Dale R. Nyholt,Michael O’Donovan,Högni Óskarsson,Nancy L. Pedersen,William A. Scheftner,Andrea Schulz,Thomas G. Schulze,Stanley I. Shyn,Engilbert Sigurðsson,Susan L. Slager,Johannes H. Smit,Hreinn Stefánsson,Michael Steffens,Thorgeir E. Thorgeirsson,Federica Tozzi,Jens Treutlein,Manfred Uhr,Edwin J.C.G. van den Oord,Gerard van Grootheest,Henry Völzke,Jeffrey B. Weilburg,Gonneke Willemsen,Frans G. Zitman,Benjamin M. Neale,Mark J. Daly,Douglas F. Levinson,Patrick F. Sullivan
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:18 (4): 497-511 被引量:1093
标识
DOI:10.1038/mp.2012.21
摘要

Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锤子米完成签到,获得积分10
刚刚
刚刚
赤练仙子完成签到,获得积分10
2秒前
MnO2fff应助zsyzxb采纳,获得20
5秒前
kingwill应助zsyzxb采纳,获得20
5秒前
顺利鱼完成签到,获得积分10
6秒前
8秒前
9秒前
Xx.完成签到,获得积分10
10秒前
星辰大海应助内向凌兰采纳,获得10
10秒前
10秒前
wuzhizhiya完成签到,获得积分10
11秒前
12秒前
rudjs发布了新的文献求助10
12秒前
15秒前
Ava应助何糖采纳,获得10
15秒前
桐桐应助美丽的芷烟采纳,获得10
15秒前
野子完成签到,获得积分10
16秒前
情怀应助小D采纳,获得30
17秒前
yuan发布了新的文献求助10
17秒前
berry发布了新的文献求助10
18秒前
18秒前
淡淡采白发布了新的文献求助10
19秒前
思源应助勤恳慕蕊采纳,获得10
19秒前
知犯何逆完成签到 ,获得积分10
20秒前
啊哈完成签到,获得积分10
20秒前
21秒前
21秒前
Draven完成签到 ,获得积分10
21秒前
tmpstlml发布了新的文献求助10
22秒前
张红梨完成签到,获得积分10
22秒前
迷迷完成签到,获得积分20
23秒前
23秒前
科研通AI2S应助chen采纳,获得10
24秒前
穿山甲坐飞机完成签到 ,获得积分10
24秒前
25秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
25秒前
科研通AI5应助经年采纳,获得10
25秒前
25秒前
勤劳晓亦应助木头人采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808