区域选择性
结合
立体选择性
铜
化学
立体化学
药物化学
组合化学
有机化学
催化作用
数学
数学分析
作者
Iain Coldham,Daniele Leonori
摘要
Copper salts have been screened for transmetalation and electrophilic quench of N-tert-butoxycarbonyl-2-lithiopyrrolidine (N-Boc-2-lithiopyrrolidine) and N-Boc-2-lithiopiperidine, formed by deprotonation of N-Boc-pyrrolidine and N-Boc-piperidine, respectively. Transmetalation with zinc chloride then (lithium chloride solubilized) copper cyanide followed by allylation typically gives mixtures of regioisomers (S(N)2 and S(N)2' products), whereas transmetalation with copper iodide.TMEDA then allylation occurs regioselectively (S(N)2 mechanism). Addition to an enone or alpha,beta-unsaturated ester occurs by 1,4-addition. Asymmetric deprotonation of N-Boc-pyrrolidine or dynamic resolution in the presence of a chiral ligand of N-Boc-2-lithiopiperidine followed by the zinc/copper chemistry was successful and gave the allylated pyrrolidine and piperidine products with good enantioselectivity, although use of the copper iodide chemistry resulted in some loss of enantiopurity. The chemistry provides formal syntheses of (+)-allosedridine, (+)-lasubine II, and (+)-pseudohygroline and has been used for the synthesis of (+)-coniine, (-)-pelletierine, (+)-coniceine, (-)-norhygrine, and the ant extract alkaloids cis- and trans-2-butyl-5-propylpyrrolidine.
科研通智能强力驱动
Strongly Powered by AbleSci AI