免疫受体酪氨酸激活基序
T细胞受体
CD3型
细胞生物学
信号转导
T细胞
生物
抗原
免疫系统
CD8型
免疫学
作者
Michael Amon,Nicholas Manolios
标识
DOI:10.1016/j.molimm.2007.08.005
摘要
Antigenic peptides initiate an immune response in T cells via the T cell receptor (TCR). The TCR itself is widely regarded as one of the most complex receptors in nature, as it is comprised of at least six different subunits, the antigen recognizing TCRalpha and beta chains, and the signal transmitting CD3deltavarepsilon, gammaepsilon, and zeta2 dimers. In order for a signal to be transmitted from the TCR to the cytoplasm, the CD3 chains must "sense" that an antigenic peptide has been presented to the TCRalpha and beta subunits. After accomplishing this, there are a total of 10 different immunoreceptor tyrosine activation motifs (ITAMs) present within the CD3 chains which effectively activate the T cell and hence the immune response. The importance of each CD3 chain and subsequently each ITAM has been the focus of intense research. However, the precise role(s) played by each CD3 chain has remained elusive. Using the immunomodulatory peptide termed core peptide (CP), which is proposed to inhibit TCR activation by disrupting TCR-CD3 interactions, a tri-modular signaling system for T cell activation is proposed. By contrast to the existing two distinct signaling model (zeta2, CD3epsilongamma/epsilondelta), in this model each of the three dimers, CD3gammaepsilon, deltaepsilon, and zeta2, are proposed to act as three separate and distinct signaling modules, performing both specific and redundant functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI