Evaluation of models for predicting drug–drug interactions due to induction

药品 计算机科学 计算生物学 体内 药物开发 药理学 生化工程 数据挖掘 医学 生物 生物技术 工程类
作者
Odette A. Fahmi,Sharon L. Ripp
出处
期刊:Expert Opinion on Drug Metabolism & Toxicology [Informa]
卷期号:6 (11): 1399-1416 被引量:82
标识
DOI:10.1517/17425255.2010.516251
摘要

Importance of the field: Drug–drug interactions caused by induction of metabolizing enzymes, particularly CYP3A, can impact the efficacy and safety of co-administered drugs. It is, therefore, important to understand a new compound's potential for enzyme induction and to understand how to use the induction data generated in vitro to predict potential for drug–drug interactions in vivo.Areas covered in this review: Recent advances in methods for using in vitro data to predict potential for CYP3A induction in vivo are reviewed.What the reader will gain: The reader will gain a comprehensive understanding of the advantages and disadvantages of various prediction methods for induction and be able to directly compare different methods using a common in vitro data set.Take home message: The various methods for predicting clinical CYP3A induction from in vitro induction data all have demonstrated utility; it is the authors' opinion that the correlation-based approaches offer as good or better predictivity and have simpler input requirements than more complex approaches. Of the different correlation approaches, the relatively simple unbound Cmax/EC50 or AUC/EC50 approaches are the simplest and yet show the best correlation to the observed clinical data. While the approaches discussed herein represent an improvement in our understanding of the predictive value of in vitro induction data, it is important to recognize that there is still room for improvement in quantitative prediction of magnitude of drug interactions due to induction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
同歌发布了新的文献求助10
刚刚
奋斗尔安应助田战采纳,获得10
1秒前
1秒前
斯文败类应助8888拉采纳,获得10
1秒前
2秒前
善学以致用应助胡HML采纳,获得10
4秒前
4秒前
无花果应助贾败采纳,获得10
4秒前
6秒前
清脆野狼发布了新的文献求助10
7秒前
言希完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
活力小夏应助科研通管家采纳,获得50
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
不懈奋进应助科研通管家采纳,获得30
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
10秒前
10秒前
10秒前
zhu97驳回了Jasper应助
11秒前
12秒前
藏识完成签到,获得积分10
13秒前
14秒前
数学情缘发布了新的文献求助10
15秒前
言希发布了新的文献求助10
15秒前
贾败发布了新的文献求助10
15秒前
Yang发布了新的文献求助10
16秒前
狄远山发布了新的文献求助10
17秒前
Peng发布了新的文献求助10
17秒前
fiber发布了新的文献求助10
18秒前
青羽凌雪应助小飞鱼采纳,获得10
19秒前
19秒前
青桔柠檬完成签到 ,获得积分10
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264175
求助须知:如何正确求助?哪些是违规求助? 2904362
关于积分的说明 8330033
捐赠科研通 2574592
什么是DOI,文献DOI怎么找? 1399202
科研通“疑难数据库(出版商)”最低求助积分说明 654449
邀请新用户注册赠送积分活动 633117