Autoencoder With Invertible Functions for Dimension Reduction and Image Reconstruction

自编码 可逆矩阵 还原(数学) 维数(图论) 降维 图像(数学) 数学 人工智能 计算机科学 算法 模式识别(心理学) 纯数学 几何学 人工神经网络
作者
Yimin Yang,Q. M. Jonathan Wu,Yaonan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (7): 1065-1079 被引量:89
标识
DOI:10.1109/tsmc.2016.2637279
摘要

The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of regression and classification. Although, it provides promising performance and robustness and has been used for various applications, the single-layer architecture possibly lacks the effectiveness when applied for natural signals. In order to over come this shortcoming, the following work indicates a new architecture based on multilayer network framework. The significant contribution of this paper are as follows: 1) unlike existing multilayer ELM, in which hidden nodes are obtained randomly, in this paper all hidden layers with invertible functions are calculated by pulling the network output back and putting it into hidden layers. Thus, the feature learning is enriched by additional information, which results in better performance; 2) in contrast to the existing multilayer network methods, which are usually efficient for classification applications, the proposed architecture is implemented for dimension reduction and image reconstruction; and 3) unlike other iterative learning-based deep networks (DL), the hidden layers of the proposed method are obtained via four steps. Therefore, it has much better learning efficiency than DL. Experimental results on 33 datasets indicate that, in comparison to the other existing dimension reduction techniques, the proposed method performs competitively better with fast training speeds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到 ,获得积分10
1秒前
陈强完成签到,获得积分10
2秒前
2秒前
何小姀完成签到,获得积分10
3秒前
只喝白开水完成签到 ,获得积分10
4秒前
冷傲半邪完成签到,获得积分10
6秒前
keyanwang完成签到 ,获得积分10
7秒前
文毛完成签到,获得积分10
8秒前
9秒前
Cheng完成签到,获得积分10
12秒前
Lzx111发布了新的文献求助10
14秒前
14秒前
俊俊完成签到 ,获得积分0
16秒前
阿琦完成签到 ,获得积分10
16秒前
buno完成签到 ,获得积分0
17秒前
高贵的子默完成签到,获得积分10
17秒前
你好发布了新的文献求助10
19秒前
lignin完成签到,获得积分10
19秒前
杰a发布了新的文献求助10
20秒前
wongshanshan完成签到,获得积分10
21秒前
21秒前
Lzx111完成签到,获得积分10
21秒前
义气高丽完成签到 ,获得积分10
22秒前
橡皮鱼完成签到,获得积分10
23秒前
29秒前
clare完成签到 ,获得积分10
29秒前
xkkk完成签到,获得积分10
32秒前
彭于彦祖应助科研通管家采纳,获得30
33秒前
Lucas应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得20
34秒前
大个应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
无花果应助科研通管家采纳,获得10
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242016
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8242953
捐赠科研通 2555001
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417