已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Autoencoder With Invertible Functions for Dimension Reduction and Image Reconstruction

自编码 可逆矩阵 还原(数学) 维数(图论) 降维 图像(数学) 数学 人工智能 计算机科学 算法 模式识别(心理学) 纯数学 几何学 人工神经网络
作者
Yimin Yang,Q. M. Jonathan Wu,Yaonan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (7): 1065-1079 被引量:91
标识
DOI:10.1109/tsmc.2016.2637279
摘要

The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of regression and classification. Although, it provides promising performance and robustness and has been used for various applications, the single-layer architecture possibly lacks the effectiveness when applied for natural signals. In order to over come this shortcoming, the following work indicates a new architecture based on multilayer network framework. The significant contribution of this paper are as follows: 1) unlike existing multilayer ELM, in which hidden nodes are obtained randomly, in this paper all hidden layers with invertible functions are calculated by pulling the network output back and putting it into hidden layers. Thus, the feature learning is enriched by additional information, which results in better performance; 2) in contrast to the existing multilayer network methods, which are usually efficient for classification applications, the proposed architecture is implemented for dimension reduction and image reconstruction; and 3) unlike other iterative learning-based deep networks (DL), the hidden layers of the proposed method are obtained via four steps. Therefore, it has much better learning efficiency than DL. Experimental results on 33 datasets indicate that, in comparison to the other existing dimension reduction techniques, the proposed method performs competitively better with fast training speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动的凝蕊完成签到 ,获得积分10
2秒前
快乐谷云完成签到,获得积分10
2秒前
lznb完成签到 ,获得积分10
2秒前
谦让的小龙完成签到 ,获得积分10
3秒前
丘比特应助liu采纳,获得10
4秒前
wanci应助Cloud采纳,获得10
4秒前
修骨匠人完成签到,获得积分10
7秒前
小蘑菇应助九bai采纳,获得10
8秒前
10秒前
Lyeming完成签到,获得积分10
10秒前
nk完成签到 ,获得积分10
14秒前
完美世界应助憨憨且老刘采纳,获得10
14秒前
丙子哥完成签到,获得积分10
14秒前
困敦发布了新的文献求助10
15秒前
16秒前
克姑美完成签到 ,获得积分10
17秒前
19秒前
聪慧曼安完成签到,获得积分10
19秒前
李多多完成签到,获得积分10
21秒前
格子完成签到,获得积分20
21秒前
22秒前
23秒前
23秒前
25秒前
26秒前
追寻沛萍完成签到,获得积分20
26秒前
26秒前
阿良关注了科研通微信公众号
27秒前
汉堡包应助琳琳采纳,获得50
27秒前
shi hui应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
guaner发布了新的文献求助10
27秒前
科研通AI2S应助科研通管家采纳,获得50
27秒前
完美世界应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
shi hui应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426