Autoencoder With Invertible Functions for Dimension Reduction and Image Reconstruction

自编码 可逆矩阵 还原(数学) 维数(图论) 降维 图像(数学) 数学 人工智能 计算机科学 算法 模式识别(心理学) 纯数学 几何学 人工神经网络
作者
Yimin Yang,Q. M. Jonathan Wu,Yaonan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (7): 1065-1079 被引量:91
标识
DOI:10.1109/tsmc.2016.2637279
摘要

The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of regression and classification. Although, it provides promising performance and robustness and has been used for various applications, the single-layer architecture possibly lacks the effectiveness when applied for natural signals. In order to over come this shortcoming, the following work indicates a new architecture based on multilayer network framework. The significant contribution of this paper are as follows: 1) unlike existing multilayer ELM, in which hidden nodes are obtained randomly, in this paper all hidden layers with invertible functions are calculated by pulling the network output back and putting it into hidden layers. Thus, the feature learning is enriched by additional information, which results in better performance; 2) in contrast to the existing multilayer network methods, which are usually efficient for classification applications, the proposed architecture is implemented for dimension reduction and image reconstruction; and 3) unlike other iterative learning-based deep networks (DL), the hidden layers of the proposed method are obtained via four steps. Therefore, it has much better learning efficiency than DL. Experimental results on 33 datasets indicate that, in comparison to the other existing dimension reduction techniques, the proposed method performs competitively better with fast training speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助tttp采纳,获得10
1秒前
Duojie发布了新的文献求助10
1秒前
4秒前
cc发布了新的文献求助10
4秒前
Litoivda完成签到 ,获得积分10
4秒前
5秒前
6秒前
7秒前
阳光BOY发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
呆呆完成签到,获得积分10
12秒前
璨澄发布了新的文献求助10
12秒前
14秒前
英姑应助个性的汲采纳,获得10
14秒前
JamesPei应助无敌小汐采纳,获得10
15秒前
FashionBoy应助无敌小汐采纳,获得10
15秒前
Litoivda发布了新的文献求助20
16秒前
激动的萧发布了新的文献求助10
17秒前
19秒前
甜甜凉面发布了新的文献求助10
19秒前
SciGPT应助556677y采纳,获得30
20秒前
能干冬瓜完成签到,获得积分10
21秒前
慕青应助激动的萧采纳,获得10
22秒前
追梦完成签到,获得积分10
24秒前
24秒前
26秒前
pengchengxi完成签到,获得积分20
26秒前
HYT完成签到,获得积分10
27秒前
小青完成签到,获得积分10
28秒前
Orange应助能干冬瓜采纳,获得10
28秒前
充电宝应助拼搏篮球采纳,获得10
29秒前
30秒前
HYT发布了新的文献求助10
30秒前
呆呆发布了新的文献求助10
30秒前
pengchengxi发布了新的文献求助10
31秒前
32秒前
安安安安安ms完成签到,获得积分10
33秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382