Invisible experience to real-time assessment in elite tennis athlete training: Sport-specific movement classification based on wearable MEMS sensor data

支持向量机 人工智能 过度拟合 朴素贝叶斯分类器 计算机科学 规范化(社会学) 机器学习 模式识别(心理学) 分类器(UML) 可穿戴计算机 交叉验证 人工神经网络 人类学 社会学 嵌入式系统
作者
Mingyue Wu,Ran Wang,Yang Hu,Mengjiao Fan,Yufan Wang,Yanchun Li,Shengyuan Wu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part P: Journal Of Sports Engineering And Technology [SAGE]
卷期号:237 (4): 271-282 被引量:11
标识
DOI:10.1177/17543371211050312
摘要

This study examined the reliability of a tennis stroke classification and assessment platform consisting of a single low-cost MEMS sensor in a wrist-worn wearable device, smartphone, and computer. The data that was collected was transmitted via Bluetooth and analyzed by machine learning algorithms. Twelve right-handed male elite tennis athletes participated in the study, and each athlete performed 150 strokes. The results from three machine learning algorithms regarding their recognition and classification of the real-time data stream were compared. Stroke recognition and classification went through pre-processing, segmentation, feature extraction, and classification with Support Vector Machine (SVM), including SVM without normalization, SVM with Min–Max, SVM with Z-score normalization, K-nearest neighbor (K-NN), and Naive Bayes (NB) machine learning algorithms. During the data training process, 10-fold cross-validation was used to avoid overfitting and suitable parameters were found within the SVM classifiers. The best classifier was achieved when C = 1 using the RBF kernel function. Different machine learning algorithms’ classification of unique stroke types yielded highly reliable clusters within each stroke type with the highest test accuracy of 99% achieved by SVM with Min–Max normalization and 98.4% achieved using SVM with a Z-score normalization classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨洋完成签到,获得积分20
刚刚
1秒前
是风动发布了新的文献求助10
3秒前
3秒前
多变的卡宾完成签到,获得积分10
4秒前
6秒前
华仔应助YY采纳,获得10
6秒前
ghk关闭了ghk文献求助
6秒前
6秒前
7秒前
高大威发布了新的文献求助10
7秒前
7秒前
牛牛发布了新的文献求助10
8秒前
wanci应助渤大彭于晏采纳,获得10
9秒前
9秒前
马德里就思议完成签到,获得积分10
10秒前
10秒前
s11完成签到,获得积分20
10秒前
希望天下0贩的0应助晚风采纳,获得10
11秒前
11秒前
夏秋完成签到,获得积分20
11秒前
12秒前
stuckinrain发布了新的文献求助10
13秒前
13秒前
13秒前
顾矜应助Shirley@yiyi采纳,获得30
14秒前
科研通AI5应助朱祥龙采纳,获得10
14秒前
14秒前
1111完成签到,获得积分20
14秒前
kingwill给Bwq的求助进行了留言
15秒前
15秒前
JIANYOUFU发布了新的文献求助10
15秒前
15秒前
科研通AI5应助虚心若烟采纳,获得10
16秒前
16秒前
牛牛完成签到,获得积分10
17秒前
沉静的小熊猫完成签到,获得积分10
18秒前
19秒前
平淡盼旋发布了新的文献求助10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126