Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets

催化作用 氧气 空位缺陷 X射线光电子能谱 材料科学 化学 电子 化学工程 光化学 化学物理 结晶学 有机化学 量子力学 物理 工程类
作者
Leilei Miao,Xiaolong Tang,Shunzheng Zhao,Xizhou Xie,Chengcheng Du,Tian Tang,Honghong Yi
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:15 (2): 1660-1671 被引量:27
标识
DOI:10.1007/s12274-021-3746-8
摘要

Achieving high catalytic performance with lower possible cost and higher energetic efficiency is critical for catalytic oxidation of volatile organic compounds (VOCs). However, traditional thermocatalysts generally undergo low catalytic activity and fewer active sites. Herein, this paper synthesizes nearly all-surface-atomic, ultrathin two-dimensional (2D) Co3O4 nanosheets to address these problems through offering a numerous active sites and high electron mobility. The 2D Co3O4 nanosheets (1.70 nm) exhibit catalyzation to the total oxidation of n-hexanal at the lower temperature of T90% = 202 °C, and at the space velocity of 5.0 × 104 h−1. It is over 1.2 and 6 times higher catalytic activity than that of 2D CoO nanosheets (1.71 nm) and bulk Co3O4 counterpart, respectively. Transient absorption spectroscopy analysis shows that the oxygen vacancy defect traps electrons, thereby preventing the recombination with holes, increasing the lifetime of τ1 electrons, and making electron-holes reach a nondynamic equilibrium. The longer the electron lifetime is, the easier the oxygen vacancy defects capture electrons. Furthermore, the defects combine with oxygen to form active oxygen components. Compared with the lattice oxygen involved in the reaction of bulk Co3O4, the nanosheets change the catalytic reaction path, which effectively reduces the activation energy barrier from 34.07 to 27.15 kJ/mol. The changed surface disorder, the numerous coordinatively-unsaturated Co atoms and the high ratio of Oads/Olat on the surface of 2D Co3O4 nanosheets are responsible for the catalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牙牙发布了新的文献求助10
刚刚
鲤鱼诗桃发布了新的文献求助10
1秒前
1秒前
2秒前
顾矜应助能干大树采纳,获得10
2秒前
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
加菲丰丰应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得10
5秒前
211JZH发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
wu发布了新的文献求助10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
5秒前
changping应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
噗噗完成签到,获得积分10
5秒前
Yinoe发布了新的文献求助10
6秒前
cycle发布了新的文献求助10
7秒前
锅里有两条鱼完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
拾贰完成签到 ,获得积分10
10秒前
科研通AI2S应助好梦采纳,获得10
13秒前
欢呼的墨镜完成签到,获得积分10
14秒前
陈均涛完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360