Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review

人工智能 计算机科学 分类器(UML) 深度学习 机器学习 领域(数学) 人工神经网络 模式识别(心理学) 特征提取 数学 纯数学
作者
Biswajit Jena,Sanjay Saxena,Gopal Nayak,Luca Saba,Neeraj Sharma,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:137: 104803-104803 被引量:53
标识
DOI:10.1016/j.compbiomed.2021.104803
摘要

Artificial intelligence (AI) has served humanity in many applications since its inception. Currently, it dominates the imaging field—in particular, image classification. The task of image classification became much easier with machine learning (ML) and subsequently got automated and more accurate by using deep learning (DL). By default, DL consists of a single architecture and is termed solo deep learning (SDL). When two or more DL architectures are fused, the result is termed a hybrid deep learning (HDL) model. The use of HDL models is becoming popular in several applications, but no review of these uses has been designed thus far. Therefore, this study provides the first narrative HDL review by considering all facets of image classification using AI. Our review employs a PRISMA search strategy using Google Scholar, PubMed, IEEE, and Elsevier Science Direct, through which 127 relevant HDL studies were considered. Based on the computer vision evolution, HDLs were subsequently classified into three categories (spatial, temporal, and spatial-temporal). Each study was then analyzed based on several attributes, including continent, publisher, hybridization of two DL or ML, architecture layout, application type, data set type, dataset size, feature extraction methodology, connecting classifier, performance evaluation metrics, and risk-of-bias. The HDL models have shown stable and superior performance by taking the best aspects of two or more solo DL or fusion of DL with ML models. Our findings indicate that HDL is being applied aggressively to several medical and non-medical applications. Furthermore, risk-of-bias is highly debatable for DL and HDL models. • Use of PRISMA model for search strategy. • Three types of hybrid deep learning architecture as: spatial, temporal, and spatial-temporal. • Comparative analysis of three architectures for real-world applications. • Linking HDL architecture with its performances with explanations. • Statistical analysis on various HDL artificial intelligence attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
energyharvester完成签到 ,获得积分10
刚刚
ertredffg完成签到,获得积分10
1秒前
1秒前
2秒前
火山暴涨球技完成签到,获得积分10
3秒前
4秒前
xyz完成签到,获得积分10
4秒前
石头发布了新的文献求助10
5秒前
xiaodong完成签到,获得积分10
5秒前
隐形荟完成签到 ,获得积分10
7秒前
霸气的亿先完成签到 ,获得积分10
7秒前
研友_n2Q9KL发布了新的文献求助10
8秒前
9秒前
miaomiao完成签到,获得积分10
11秒前
ceeray23应助怕黑的冰安采纳,获得10
12秒前
khurram完成签到,获得积分10
12秒前
ohnono发布了新的文献求助20
14秒前
研友_n2Q9KL完成签到,获得积分10
14秒前
公西翠萱完成签到,获得积分10
18秒前
ForComposites完成签到,获得积分10
19秒前
淳于安筠完成签到,获得积分10
20秒前
whyme完成签到,获得积分10
20秒前
陈宗琴完成签到,获得积分10
24秒前
sxd完成签到,获得积分10
24秒前
苏苏爱学习完成签到 ,获得积分10
25秒前
沉甸甸完成签到,获得积分10
25秒前
26秒前
枫叶应助淳于安筠采纳,获得10
27秒前
执意完成签到 ,获得积分10
27秒前
老张完成签到,获得积分10
27秒前
VelesAlexei完成签到,获得积分10
27秒前
LIUUU完成签到,获得积分10
27秒前
笑点低的傲白完成签到,获得积分10
28秒前
丿淘丶Tao丨完成签到,获得积分10
29秒前
光亮千易完成签到,获得积分10
29秒前
Moonpie应助猕猴桃采纳,获得10
30秒前
悠游书浪完成签到,获得积分10
33秒前
huilihub完成签到,获得积分10
35秒前
王小西完成签到,获得积分10
36秒前
威武的邪欢完成签到 ,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450512
求助须知:如何正确求助?哪些是违规求助? 3046034
关于积分的说明 9004065
捐赠科研通 2734711
什么是DOI,文献DOI怎么找? 1500107
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542