Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review

人工智能 计算机科学 分类器(UML) 深度学习 机器学习 领域(数学) 人工神经网络 模式识别(心理学) 特征提取 数学 纯数学
作者
Biswajit Jena,Sanjay Saxena,Gopal Nayak,Luca Saba,Neeraj Sharma,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:137: 104803-104803 被引量:53
标识
DOI:10.1016/j.compbiomed.2021.104803
摘要

Artificial intelligence (AI) has served humanity in many applications since its inception. Currently, it dominates the imaging field—in particular, image classification. The task of image classification became much easier with machine learning (ML) and subsequently got automated and more accurate by using deep learning (DL). By default, DL consists of a single architecture and is termed solo deep learning (SDL). When two or more DL architectures are fused, the result is termed a hybrid deep learning (HDL) model. The use of HDL models is becoming popular in several applications, but no review of these uses has been designed thus far. Therefore, this study provides the first narrative HDL review by considering all facets of image classification using AI. Our review employs a PRISMA search strategy using Google Scholar, PubMed, IEEE, and Elsevier Science Direct, through which 127 relevant HDL studies were considered. Based on the computer vision evolution, HDLs were subsequently classified into three categories (spatial, temporal, and spatial-temporal). Each study was then analyzed based on several attributes, including continent, publisher, hybridization of two DL or ML, architecture layout, application type, data set type, dataset size, feature extraction methodology, connecting classifier, performance evaluation metrics, and risk-of-bias. The HDL models have shown stable and superior performance by taking the best aspects of two or more solo DL or fusion of DL with ML models. Our findings indicate that HDL is being applied aggressively to several medical and non-medical applications. Furthermore, risk-of-bias is highly debatable for DL and HDL models. • Use of PRISMA model for search strategy. • Three types of hybrid deep learning architecture as: spatial, temporal, and spatial-temporal. • Comparative analysis of three architectures for real-world applications. • Linking HDL architecture with its performances with explanations. • Statistical analysis on various HDL artificial intelligence attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
板栗完成签到,获得积分10
2秒前
leozhang完成签到,获得积分10
2秒前
yhbk发布了新的文献求助10
2秒前
十个勤天完成签到,获得积分10
2秒前
2秒前
hss完成签到 ,获得积分10
2秒前
2秒前
明天又是美好的一天完成签到 ,获得积分10
2秒前
学术大亨完成签到,获得积分10
2秒前
guomingqian发布了新的文献求助10
2秒前
ShengjuChen完成签到 ,获得积分10
3秒前
WYang完成签到,获得积分10
4秒前
小超人完成签到 ,获得积分10
4秒前
如初发布了新的文献求助10
4秒前
5秒前
随机的昵称完成签到,获得积分10
5秒前
阿龙完成签到,获得积分10
5秒前
Perrylin718完成签到,获得积分10
5秒前
5秒前
5秒前
lululemon完成签到 ,获得积分10
6秒前
风雨霖霖关注了科研通微信公众号
6秒前
biubiu完成签到,获得积分10
6秒前
项听蓉完成签到,获得积分10
6秒前
欣慰的海雪关注了科研通微信公众号
7秒前
貔貅完成签到,获得积分10
7秒前
8秒前
谦让柜子发布了新的文献求助10
8秒前
9秒前
9秒前
苹果小蜜蜂完成签到,获得积分10
9秒前
忧郁的风华完成签到,获得积分10
9秒前
zhang26xian完成签到,获得积分10
10秒前
chen完成签到,获得积分10
11秒前
11秒前
sky完成签到 ,获得积分10
11秒前
vv发布了新的文献求助10
12秒前
12秒前
赘婿应助奔流的河采纳,获得10
12秒前
小冯完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890