Quantifying the human disturbance intensity of ecosystems and its natural and socioeconomic driving factors in urban agglomeration in South China

城市化 中国 环境科学 地理 驱动因素 城市群 扰动(地质) 土地利用 生态系统 生态学 人口 空间异质性 城市生态学 经济地理学 比例(比率) 自然资源经济学 集聚经济 空间生态学
作者
Xiao-Jun Wang,Guang-Xu Liu,Ai-Cun Xiang,Salman Qureshi,Tianhang Li,Dezhuo Song,Churan Zhang
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:: 1-17 被引量:2
标识
DOI:10.1007/s11356-021-16349-1
摘要

The impact of human activities on terrestrial ecosystems is becoming more intense than ever in history. Human disturbance analyses play important roles in appropriately managing the human–environment relationship. In this study, a human disturbance index (HDI) that uses land use and land cover data from 1980, 2000, 2010, and 2018 is proposed to assess the human disturbance of ecosystems in the Guangdong-Hong Kong-Macao Greater Bay Area. The HDI is first calculated by classifying the human disturbance intensity into seven levels and 13 categories from weak to strong in ecosystems. Then the driving factors of the HDI spatial pattern change are explored using a geographically weighted regression (GWR) model. The results showed that the spatial pattern of the HDI was high in the middle and low in the surrounding areas. The intensity of human disturbance increased, and the medium and high disturbance areas expanded during 1980–2018, especially in Guangzhou, Foshan, Shenzhen, and Dongguan. Human disturbance displayed an obvious spatial heterogeneity. The GWR model had a better explanation effect of the analysis of the HDI change drivers. The driving effect of the socioeconomic conditions was significantly stronger than that of the natural environmental. This study assists in understanding the distribution and change characteristics of the ecological environment in areas with strong human activities and provides a reference for related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助camellia采纳,获得10
刚刚
Zoe发布了新的文献求助10
刚刚
刚刚
刚刚
啊实打实完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
参上完成签到,获得积分10
3秒前
mingjie完成签到,获得积分10
3秒前
yam001完成签到,获得积分10
3秒前
aaaaa发布了新的文献求助10
3秒前
4秒前
牧紫菱完成签到,获得积分10
4秒前
5秒前
研友_RLN0vZ发布了新的文献求助10
5秒前
5秒前
5秒前
神勇的雅香应助001采纳,获得10
6秒前
研友_V8RDYn完成签到,获得积分10
6秒前
zzznznnn发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
FFFFFFF应助晓军采纳,获得10
9秒前
wanci应助艺玲采纳,获得10
9秒前
jfc完成签到 ,获得积分10
9秒前
香蕉觅云应助月白采纳,获得10
9秒前
思源应助mmx采纳,获得10
9秒前
Diaory2023完成签到 ,获得积分0
9秒前
雪小岳完成签到,获得积分10
10秒前
李小明完成签到,获得积分10
10秒前
10秒前
白小白发布了新的文献求助10
11秒前
thchiang发布了新的文献求助30
11秒前
Crsip关注了科研通微信公众号
11秒前
乐乐应助camellia采纳,获得10
12秒前
小二郎应助无情的白桃采纳,获得10
12秒前
12秒前
研友_Zb1rln完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762