A deep‐learning‐based prediction model for the biodistribution of 90Y microspheres in liver radioembolization

体内分布 核医学 微球 体素 肝癌 医学 肝细胞癌 剂量学 放射科 化学 内科学 化学工程 生物化学 工程类 体外
作者
Dimitris Plachouris,Ioannis Tzolas,Ilias Gatos,Panagiotis Papadimitroulas,Trifon Spyridonidis,D. Apostolopoulos,Νικόλαος Παπαθανασίου,Dimitris Visvikis,Kerasia‐Maria Plachouri,John D. Hazle,George C. Kagadis
出处
期刊:Medical Physics [Wiley]
卷期号:48 (11): 7427-7438 被引量:11
标识
DOI:10.1002/mp.15270
摘要

Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics.The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy.Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel.The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy.The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马户牙发布了新的文献求助10
1秒前
乐乐应助ss采纳,获得10
2秒前
3秒前
在下想完成签到 ,获得积分10
3秒前
念头发布了新的文献求助10
3秒前
打打应助TBHP采纳,获得10
3秒前
3秒前
sabet完成签到,获得积分10
4秒前
4秒前
sxy完成签到,获得积分10
5秒前
123321完成签到,获得积分10
5秒前
丁丁关注了科研通微信公众号
5秒前
逗号发布了新的文献求助10
6秒前
酷波er应助嗑瓜子传奇采纳,获得10
7秒前
sxy发布了新的文献求助10
8秒前
之道应助倪倪采纳,获得20
9秒前
芝麻糊应助悦耳静枫采纳,获得10
10秒前
猪猪hero发布了新的文献求助10
10秒前
11秒前
改改完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
领导范儿应助vippp采纳,获得30
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
CipherSage应助活力的妙之采纳,获得30
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
陈功完成签到,获得积分10
15秒前
iNk应助眼睛大大米采纳,获得10
16秒前
16秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384