A deep‐learning‐based prediction model for the biodistribution of 90Y microspheres in liver radioembolization

体内分布 核医学 微球 体素 肝癌 医学 肝细胞癌 剂量学 放射科 化学 内科学 生物化学 化学工程 工程类 体外
作者
Dimitris Plachouris,Ioannis Tzolas,Ilias Gatos,Panagiotis Papadimitroulas,Trifon Spyridonidis,D. Apostolopoulos,Νικόλαος Παπαθανασίου,Dimitris Visvikis,Kerasia‐Maria Plachouri,John D. Hazle,George C. Kagadis
出处
期刊:Medical Physics [Wiley]
卷期号:48 (11): 7427-7438 被引量:11
标识
DOI:10.1002/mp.15270
摘要

Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics.The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy.Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel.The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy.The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ww007完成签到,获得积分10
2秒前
zht完成签到,获得积分10
2秒前
JHJ完成签到,获得积分10
3秒前
666应助夕荀采纳,获得10
5秒前
圈圈发布了新的文献求助20
6秒前
ggun完成签到,获得积分10
7秒前
水濑心源发布了新的文献求助10
9秒前
11秒前
赘婿应助洁净的静芙采纳,获得30
11秒前
搜集达人应助艺心采纳,获得10
11秒前
qwe发布了新的文献求助10
11秒前
RUINNNO完成签到,获得积分10
13秒前
ff发布了新的文献求助20
13秒前
许子健发布了新的文献求助30
14秒前
我爱睡懒觉完成签到,获得积分10
18秒前
TiO2完成签到 ,获得积分10
18秒前
18秒前
深情安青应助小智采纳,获得10
19秒前
英俊的铭应助123采纳,获得10
20秒前
24秒前
积极的夜蕾完成签到,获得积分10
26秒前
安居宝应助qwe采纳,获得10
28秒前
28秒前
28秒前
Orange应助诚心谷南采纳,获得10
29秒前
深情安青应助云氲采纳,获得10
31秒前
31秒前
33秒前
小孟吖完成签到 ,获得积分10
33秒前
许子健发布了新的文献求助10
33秒前
小智发布了新的文献求助10
34秒前
123发布了新的文献求助10
34秒前
等待的鞯完成签到 ,获得积分10
35秒前
打打应助ff采纳,获得10
36秒前
Jasper应助小董不懂采纳,获得30
36秒前
可爱香槟发布了新的文献求助30
37秒前
38秒前
自由的马里奥完成签到 ,获得积分10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388