SAFE: A Simple Approach for Feature Extraction from App Descriptions and App Reviews

计算机科学 应用商店 情报检索 万维网 判决 特征(语言学) 匹配(统计) 精确性和召回率 特征提取 人工智能 数学 语言学 统计 哲学
作者
Timo Johann,Christoph Stanik,Alireza M. Alizadeh B.,Walid Maalej
标识
DOI:10.1109/re.2017.71
摘要

A main advantage of app stores is that they aggregate important information created by both developers and users. In the app store product pages, developers usually describe and maintain the features of their apps. In the app reviews, users comment these features. Recent studies focused on mining app features either as described by developers or as reviewed by users. However, extracting and matching the features from the app descriptions and the reviews is essential to bear the app store advantages, e.g. allowing analysts to identify which app features are actually being reviewed and which are not. In this paper, we propose SAFE, a novel uniform approach to extract app features from the single app pages, the single reviews and to match them. We manually build 18 part-of-speech patterns and 5 sentence patterns that are frequently used in text referring to app features. We then apply these patterns with several text pre-and post-processing steps. A major advantage of our approach is that it does not require large training and configuration data. To evaluate its accuracy, we manually extracted the features mentioned in the pages and reviews of 10 apps. The extraction precision and recall outperformed two state-of-the-art approaches. For well-maintained app pages such as for Google Drive our approach has a precision of 87% and on average 56% for 10 evaluated apps. SAFE also matches 87% of the features extracted from user reviews to those extracted from the app descriptions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
抱小熊睡觉应助太阳采纳,获得10
2秒前
木叶_卡卡西完成签到,获得积分10
4秒前
小蘑菇应助文献求助采纳,获得30
4秒前
4秒前
chenchenchen发布了新的文献求助10
4秒前
4秒前
Akim应助Jiang采纳,获得10
5秒前
Lucas应助wzhang采纳,获得10
6秒前
7秒前
李爱国应助积极的千雁采纳,获得30
7秒前
Mewo发布了新的文献求助10
7秒前
羡三岁应助xiaobai采纳,获得10
8秒前
8秒前
8秒前
8秒前
顾矜应助任性的静枫采纳,获得10
9秒前
vovoking完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
14秒前
14秒前
支半雪发布了新的文献求助10
15秒前
15秒前
16秒前
解惑发布了新的文献求助10
17秒前
张张张完成签到,获得积分10
17秒前
chenchenchen发布了新的文献求助10
18秒前
18秒前
Sean发布了新的文献求助10
21秒前
nice1025完成签到,获得积分10
21秒前
21秒前
Yihsin完成签到,获得积分10
22秒前
爆米花应助酷炫皮皮虾采纳,获得10
22秒前
23秒前
柯柯完成签到 ,获得积分10
23秒前
Liangstar完成签到 ,获得积分10
23秒前
不上课不行完成签到,获得积分10
23秒前
zys2001mezy应助调皮寄瑶采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424