放射治疗
放射增敏剂
体内
癌症研究
材料科学
黑磷
生物相容性
光动力疗法
细胞凋亡
纳米技术
癌症
医学
内科学
化学
生物
光电子学
生物化学
生物技术
冶金
有机化学
作者
Hao Huang,Lizhen He,Wenhua Zhou,Guangbo Qu,Jiahong Wang,Na Yang,Jie Gao,Tianfeng Chen,Paul K. Chu,Xue‐Feng Yu
出处
期刊:Biomaterials
[Elsevier]
日期:2018-04-13
卷期号:171: 12-22
被引量:98
标识
DOI:10.1016/j.biomaterials.2018.04.022
摘要
X-ray induced photodynamic therapy (X-ray-PDT) is a promising approach for synergistic cancer radiotherapy and development of suitable radiosensitizers is highly desired. In this paper, we propose black phosphorus/Bi2O3 (BP/Bi2O3) heterostructures as efficient and biocompatible radiosensitizers for synergistic cancer radiotherapy. The heterostructures are synthesized by growth of ultrasmall Bi2O3 nanoparticles onto BP nanosheets. The Bi2O3 decoration inhibits the rapid degradation of BP nanosheets by occupation of the defect sites, and the synergistic effects of BP and Bi2O3 enable 1O2 overproduction under X-ray irradiation. This X-ray-PDT effect of the BP/Bi2O3 nanosheets enhances the radiotherapy activity towards cancer cells by inducing cell apoptosis and cycle arrest. In vivo treatment of melanoma conducted on a clinical radiotherapeutic instrument demonstrates that the BP/Bi2O3 sensitized radiotherapy inhibits tumor growth efficiently. Furthermore, the BP/Bi2O3 nanosheets composed of biological friendly P, O, and Bi elements shows good biocompatibility in vitro and in vivo. This radiosensitizer thus has immense clinical potential for cancer therapy, and our findings reveal a general strategy to fabricate stable BP-based heterostructures for different applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI