Self-co-attention neural network for anatomy segmentation in whole breast ultrasound

分割 计算机科学 人工智能 深度学习 背景(考古学) 编码器 块(置换群论) 人工神经网络 模式识别(心理学) 计算机视觉 数学 古生物学 几何学 生物 操作系统
作者
Baiying Lei,Shan Huang,Hang Li,Ran Li,Cheng Bian,Yi‐Hong Chou,Jing Qin,Peng Zhou,Xuehao Gong,Jie‐Zhi Cheng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:64: 101753-101753 被引量:57
标识
DOI:10.1016/j.media.2020.101753
摘要

The automated whole breast ultrasound (AWBUS) is a new breast imaging technique that can depict the whole breast anatomy. To facilitate the reading of AWBUS images and support the breast density estimation, an automatic breast anatomy segmentation method for AWBUS images is proposed in this study. The problem at hand is quite challenging as it needs to address issues of low image quality, ill-defined boundary, large anatomical variation, etc. To address these issues, a new deep learning encoder-decoder segmentation method based on a self-co-attention mechanism is developed. The self-attention mechanism is comprised of spatial and channel attention module (SC) and embedded in the ResNeXt (i.e., Res-SC) block in the encoder path. A non-local context block (NCB) is further incorporated to augment the learning of high-level contextual cues. The decoder path of the proposed method is equipped with the weighted up-sampling block (WUB) to attain class-specific better up-sampling effect. Meanwhile, the co-attention mechanism is also developed to improve the segmentation coherence among two consecutive slices. Extensive experiments are conducted with comparison to several the state-of-the-art deep learning segmentation methods. The experimental results corroborate the effectiveness of the proposed method on the difficult breast anatomy segmentation problem on AWBUS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shatang发布了新的文献求助10
刚刚
lesyeuxdexx完成签到 ,获得积分10
2秒前
3秒前
程琳完成签到,获得积分20
4秒前
5秒前
卓哥发布了新的文献求助10
5秒前
科研通AI5应助sansan采纳,获得10
6秒前
6秒前
6秒前
脑洞疼应助杰森斯坦虎采纳,获得10
6秒前
8秒前
9秒前
研友_QQC完成签到,获得积分10
9秒前
NeuroWhite完成签到,获得积分10
9秒前
9秒前
搜索v完成签到,获得积分10
10秒前
liuchuck完成签到 ,获得积分10
10秒前
10秒前
10秒前
猫独秀完成签到,获得积分10
10秒前
12秒前
buno应助yuefeng采纳,获得10
12秒前
yiming完成签到,获得积分10
12秒前
落落发布了新的文献求助10
13秒前
清秋若月完成签到 ,获得积分10
13秒前
13秒前
呵呵呵呵完成签到,获得积分10
14秒前
14秒前
远方发布了新的文献求助10
15秒前
zxc111关注了科研通微信公众号
15秒前
16秒前
nanhe698发布了新的文献求助10
16秒前
Huang完成签到,获得积分10
16秒前
碳土不凡完成签到 ,获得积分10
17秒前
17秒前
淡淡采白发布了新的文献求助10
18秒前
18秒前
19秒前
Akim应助dingdong采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808