Self-co-attention neural network for anatomy segmentation in whole breast ultrasound

分割 计算机科学 人工智能 深度学习 背景(考古学) 编码器 块(置换群论) 人工神经网络 模式识别(心理学) 计算机视觉 数学 几何学 生物 操作系统 古生物学
作者
Baiying Lei,Shan Huang,Hang Li,Ran Li,Cheng Bian,Yi‐Hong Chou,Jing Qin,Peng Zhou,Xuehao Gong,Jie‐Zhi Cheng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:64: 101753-101753 被引量:57
标识
DOI:10.1016/j.media.2020.101753
摘要

The automated whole breast ultrasound (AWBUS) is a new breast imaging technique that can depict the whole breast anatomy. To facilitate the reading of AWBUS images and support the breast density estimation, an automatic breast anatomy segmentation method for AWBUS images is proposed in this study. The problem at hand is quite challenging as it needs to address issues of low image quality, ill-defined boundary, large anatomical variation, etc. To address these issues, a new deep learning encoder-decoder segmentation method based on a self-co-attention mechanism is developed. The self-attention mechanism is comprised of spatial and channel attention module (SC) and embedded in the ResNeXt (i.e., Res-SC) block in the encoder path. A non-local context block (NCB) is further incorporated to augment the learning of high-level contextual cues. The decoder path of the proposed method is equipped with the weighted up-sampling block (WUB) to attain class-specific better up-sampling effect. Meanwhile, the co-attention mechanism is also developed to improve the segmentation coherence among two consecutive slices. Extensive experiments are conducted with comparison to several the state-of-the-art deep learning segmentation methods. The experimental results corroborate the effectiveness of the proposed method on the difficult breast anatomy segmentation problem on AWBUS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助shinn采纳,获得10
刚刚
极品男大发布了新的文献求助10
1秒前
Jasper应助飘逸的寄柔采纳,获得10
1秒前
chengxue发布了新的文献求助10
3秒前
王洋完成签到,获得积分10
4秒前
4秒前
Bryan应助赵鑫采纳,获得10
4秒前
无问西东完成签到,获得积分0
6秒前
7秒前
顺心凡之完成签到,获得积分10
8秒前
柯一一应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
ll应助科研通管家采纳,获得10
11秒前
思源应助希文采纳,获得20
13秒前
Ahiterin发布了新的文献求助30
13秒前
脑洞疼应助Mingchun采纳,获得10
13秒前
14秒前
15秒前
Sean发布了新的文献求助10
16秒前
shinn发布了新的文献求助10
18秒前
何劲松完成签到,获得积分10
19秒前
青衣北风发布了新的文献求助10
21秒前
极品男大完成签到,获得积分20
21秒前
幽梦挽歌完成签到,获得积分20
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528