Solid electrolyte composite Li4P2O7–Li3PO4 for lithium ion battery

离子电导率 电解质 电导率 快离子导体 锂(药物) 复合数 材料科学 扫描电子显微镜 离子 介电谱 锂离子电池 离子键合 分析化学(期刊) 化学 电池(电) 电化学 色谱法 物理化学 电极 复合材料 有机化学 医学 物理 量子力学 内分泌学 功率(物理)
作者
Evvy Kartini,Valentina Yapriadi,Heri Jodi,Maykel Manawan,Cipta Panghegar Supriadi,Wahyudianingsih
出处
期刊:Progress in Natural Science: Materials International [Elsevier]
卷期号:30 (2): 168-173 被引量:21
标识
DOI:10.1016/j.pnsc.2020.01.020
摘要

The researches on solid electrolyte have been significantly increasing due to the safety problem in lithium ion battery. The lithium phosphates are chosen due to environmentally friendly. In the present study Li4P2O7 was synthesized by solid state reaction using NH4H2PO4 and Li2CO3 with the ratio 1:2 at various temperatures of 600 °C, 800 °C and 900 °C. The products were characterized by x-ray diffraction, scanning electron microscopy and impedance spectroscopy. The x-ray diffraction showed that all samples consisted of two phases. It was found that the products consisted of 52.44% Li4P2O7 and 47.56% LiPO3; 93.56% Li4P2O7 and 6.44% Li3PO4; and 46.27% Li4P2O7 and 53.67% Li3PO4 under the synthesizing temperature of 600 °C, 800 °C and 900 °C, respectively. The highest ionic conductivity of 3.85 × 10−5 S/m was achieved for composite Li4P2O7–Li3PO4 with the highest content of 93.56% Li4P2O7. This conductivity is higher compared with single phase of LiPO3, Li3PO4 and Li4P2O7. The increase in ionic conductivity may be due to the mixed anion effects related to the phosphate networks, and it also corresponds to the existence of anorthic phase Li4P2O7 with the space group P −1 (2). The crystal lattice analysis showed that the reactant Li4P2O7 consisted of diphosphate groups P2O7. The lithium tetrahedral LiO4 were linked to P2O7 groups formed a continuous framework containing large voids, available for Li+ ion transport, and thus it exhibited high conductivity. A composite Li4P2O7–Li3PO4 is a promising solid electrolyte for solid state battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
章鱼完成签到,获得积分10
1秒前
NexusExplorer应助cc采纳,获得10
1秒前
苦海完成签到,获得积分10
2秒前
shoolarli发布了新的文献求助10
2秒前
诸笑白完成签到,获得积分10
3秒前
小羊小羊完成签到 ,获得积分10
3秒前
御觞丶完成签到,获得积分10
4秒前
阿超完成签到,获得积分10
4秒前
LL完成签到 ,获得积分10
4秒前
呼呼哈哈完成签到,获得积分10
5秒前
啊啊~秋~完成签到,获得积分10
5秒前
5秒前
南城以南完成签到,获得积分10
6秒前
张童鞋完成签到 ,获得积分10
6秒前
Marilinta完成签到,获得积分10
6秒前
幽默的忆霜完成签到 ,获得积分10
6秒前
年轻的擎苍完成签到 ,获得积分10
8秒前
CAIJING发布了新的文献求助10
9秒前
9秒前
拼搏亦松完成签到,获得积分10
11秒前
11秒前
过于喧嚣的孤独完成签到,获得积分10
11秒前
火星上亦云完成签到,获得积分10
11秒前
Iris完成签到,获得积分10
12秒前
竹林风箫完成签到,获得积分10
12秒前
苗苗043完成签到,获得积分10
12秒前
renovel完成签到,获得积分10
12秒前
Maor完成签到,获得积分10
14秒前
14秒前
14秒前
marco完成签到 ,获得积分10
15秒前
赵某人完成签到,获得积分10
15秒前
科研通AI5应助nextconnie采纳,获得10
16秒前
馨妈发布了新的文献求助10
16秒前
代杰居然完成签到 ,获得积分10
16秒前
science完成签到,获得积分10
16秒前
17秒前
qinkoko完成签到,获得积分10
18秒前
dd99081完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890