Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications

超级电容器 材料科学 石墨烯 纳米复合材料 电极 扫描电子显微镜 电容 电化学 氧化物 化学工程 纳米颗粒 纳米技术 复合材料 冶金 化学 物理化学 工程类
作者
Rahúl Singhal,D. J. Thorne,Peter K. LeMaire,Xavier Martinez,Chen Zhao,Ram K. Gupta,David Uhl,Ellen Scanley,C. Broadbridge,Rakesh K. Sharma
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:10 (3) 被引量:30
标识
DOI:10.1063/1.5132713
摘要

Supercapacitors or electrochemical capacitors are receiving greater interest because of their high-power density, long life, and low maintenance. We have synthesized CuS nanoparticles and graphene oxide (CuS–GO) nanocomposites for supercapacitor applications because of their low cost and excellent electrochemical properties. The phase purity of each material was determined using powder XRD studies. The bandgap was determined by UV-visible spectrophotometric studies. Scanning electron microscope and transmission electron microscope images revealed the nano-scale morphology of the synthesized particles. All the electrochemical measurements were conducted in a standard three-electrode configuration, using a platinum wire as the counter electrode and Hg/HgO as the reference electrode. CuS and its composites with graphene oxide on nickel foam were used as working electrodes. All the electrochemical measurements were performed in 3M KOH solution. The CuS–GO nanocomposite electrode showed a specific capacitance of 250 F/g, 225 F/g, 182 F/g, 166 F/g, 161 F/g, and 158 F/g at a current density of 0.5 A/g, 1 A/g, 5 A/g, 10 A/g, 15 A/g, and 20 A/g, respectively. CuS–GO electrodes showed a specific capacitance retention of 70% after 5000 charge–discharge cycles at a current density of 5 A/g.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
chinzz应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得60
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
脑洞疼应助叽里咕卢采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
chinzz应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
鱼鱼完成签到 ,获得积分10
4秒前
尛瞐慶成发布了新的文献求助10
4秒前
困困桃完成签到,获得积分10
5秒前
Rambo发布了新的文献求助10
6秒前
6秒前
lbw发布了新的文献求助10
6秒前
zhang完成签到,获得积分10
6秒前
6秒前
7秒前
栗子壳完成签到 ,获得积分10
7秒前
qwe发布了新的文献求助10
7秒前
8秒前
小毛逗发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320