Density peak clustering using global and local consistency adjustable manifold distance

聚类分析 缩放比例 一致性(知识库) 数学 算法 星团(航天器) 比例(比率) 模式识别(心理学) 计算机科学 歧管(流体力学) 人工智能 统计 物理 几何学 机械工程 工程类 量子力学 程序设计语言
作者
Xinmin Tao,Wenjie Guo,Chao Ren,Qing Li,Qing He,Rui Liu,Junrong Zou
出处
期刊:Information Sciences [Elsevier]
卷期号:577: 769-804 被引量:30
标识
DOI:10.1016/j.ins.2021.08.036
摘要

A novel density-based clustering algorithm, called Density Peak Clustering (DPC), has recently received great attention due to its efficiency in clustering performance and simplicity in implementation. However, empirical studies have demonstrated that the commonly used distance measures in DPC cannot simultaneously consider global and local consistency, which can cause the estimated local densities based on it incapable of capturing the ground-truth data structure and thus produce poor clustering results, especially when the clusters existing in datasets exhibit multi-density manifold structures characteristics with different sizes. In order to address those limitations, we propose a novel density peak clustering algorithm using global and local consistency adjustable manifold distance in this paper. In the proposed algorithm, a novel manifold distance with exponential term and scaling factor is introduced to estimate local densities of all data points. By modifying its exponential term and scaling factor, we can flexibly adjust the ratio of the distance between the data within the same manifold to the distance between the data across different manifolds. This flexible adjustment is beneficial to the estimated local densities more accurately reflecting the global and local consistency of data structures. In addition, to effectively deal with clusters with different densities and sizes, a compensation strategy for distance from nearest point with larger density, called local-scale tuning distance, is developed for our proposed approach. By the developed local-scale tuning distance, underlying cluster centers of clusters with different densities and sizes, especially the clusters with low densities or small sizes can remarkably stand out from the decision graph so that the proposed method can accurately identify the number of underlying clusters in the decision graph and thus obtain satisfactory clustering results. In the experimental part, the effect of the scaling factor on the performance of the proposed technique is discussed and some suggestions about the determination of the parameters are given. Theoretical analysis and experimental results on several synthetic datasets and read-world datasets demonstrate that the proposed approach is superior to other existing clustering techniques in terms of three evaluation metrics with statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Choi完成签到,获得积分10
刚刚
英俊的铭应助战斗暴龙兽采纳,获得10
1秒前
lanrete完成签到,获得积分10
1秒前
阿元应助Jeo采纳,获得10
2秒前
Jasper应助吱哦周采纳,获得10
3秒前
八森木完成签到 ,获得积分10
8秒前
大力日记本完成签到,获得积分10
12秒前
14秒前
15秒前
炙热的河马完成签到,获得积分10
17秒前
端庄白猫发布了新的文献求助10
18秒前
syt完成签到,获得积分10
19秒前
大力日记本完成签到,获得积分10
19秒前
木子倪完成签到,获得积分10
20秒前
Hello应助平平淡淡采纳,获得10
20秒前
烟花应助然大宝采纳,获得10
24秒前
张亮完成签到,获得积分10
25秒前
犹豫的凡白完成签到 ,获得积分10
26秒前
鹅鹅鹅饿完成签到 ,获得积分10
27秒前
眼睛大的寄真完成签到 ,获得积分10
29秒前
Jasper应助科研通管家采纳,获得20
30秒前
今后应助科研通管家采纳,获得10
30秒前
30秒前
所所应助科研通管家采纳,获得10
30秒前
30秒前
无花果应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
liyunma完成签到,获得积分10
32秒前
轻松的剑完成签到 ,获得积分10
34秒前
山乞凡完成签到 ,获得积分10
39秒前
可靠的书桃完成签到 ,获得积分10
39秒前
CipherSage应助zhangxr采纳,获得10
41秒前
42秒前
Yu完成签到 ,获得积分10
42秒前
45秒前
吃小孩的妖怪完成签到 ,获得积分10
46秒前
byelue完成签到,获得积分10
47秒前
美满的稚晴完成签到 ,获得积分10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176