过电位
金属间化合物
材料科学
电催化剂
塔菲尔方程
分解水
化学工程
催化作用
电解质
电化学
冶金
合金
电极
物理化学
化学
有机化学
工程类
光催化
作者
Qiuxia Zhou,Hao Qin,Yaxin Li,Jinghua Yu,Caixia Xu,Hong Liu,Shishen Yan
出处
期刊:Nano Energy
[Elsevier]
日期:2021-08-04
卷期号:89: 106402-106402
被引量:66
标识
DOI:10.1016/j.nanoen.2021.106402
摘要
Intermetallics have attracted considerable research interests in a variety of electrocatalysis reactions due to their specific activity, selectivity, and stability arising from more severe alternation of electronic structure than substitutional alloys. Herein, we report one free-standing trimodal porous β1-NiZn intermetallic and Ni heterostructure on Ni foam (TMP NiZn-Ni/NF) for hydrogen evolution reaction (HER) via electrochemical water-alkali splitting through one convenient and scalable dealloying strategy. Benefitting from high density reactive sites and fluent mass transfer as a result of trimodal porous architecture and strong electronic modulation from NiZn intermetallic, TMP NiZn-Ni/NF primely overcomes the sluggish hydrogen evolving kinetics with superior catalytic performances comparable to Pt/C and many other reported similar electrocatalysts. TMP NiZn-Ni/NF only required the low overpotential of 233 mV at high rate of 600 mA cm−2 with the small Tafel slope at 47.3 mV dec−1 in 1.0 M KOH solution. TMP NiZn-Ni/NF also exhibits exceptional catalytic durability toward HER with almost no current loss under the overpotential of 100 mV for 50 h. Theoretical calculations reveal that β1-NiZn intermetallic itself has low Gibbs free energy for H adsorption (ΔGH*), while it can also greatly decrease the ΔGH* of heterojuncted Ni. This work presents one powerful and scalable protocol to screen self-supporting nonprecious intermetallic nanocatalysts with high density active sites and outstanding catalytic efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI