Electrocardiogram classification based on convolutional neural network and transfer learning

Softmax函数 计算机科学 卷积神经网络 人工智能 学习迁移 深度学习 模式识别(心理学) 联营 人工神经网络 机器学习 自编码 光谱图 特征提取 支持向量机 上下文图像分类 分类器(UML) 特征(语言学) 特征学习
作者
Jing Zhou,Aisheng Dong
出处
期刊:IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference 被引量:1
标识
DOI:10.1109/imcec51613.2021.9482020
摘要

Deep learning is a branch of machine learning, and its methods are now being used to solve all kinds of problems. Deep learning algorithms can learn advanced features from massive data and automatically extract features, which makes deep learning surpass traditional machine learning algorithms. However, as deep learning algorithms rely on large amounts of data and run too slowly, transfer learning arises in response to this disadvantage. Transfer learning allows the use of existing knowledge in the relevant domain to solve a learning problem with only a small number of sample data in the target domain. Combining the two technologies of deep learning and transfer learning, on the one hand, advanced features of data samples can be automatically learned, and on the other hand, it can get rid of the dependence on sample data capacity. In this paper, the electrocardiogram (ECG) signal into spectrogram, and the model is trained with the ImageNet dataset, and then the trained model is transferred, because AlexNet model needs to be fixed image size, so the last pool layer is replaced by a spatial pyramid pooling layer, finally use Softmax classifier for PhysioNet challenge 2017 electrocardiogram data sets are classified, get a 92.84% accuracy and 83.26% F1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
yangya应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
FashionBoy应助美丽仙人掌采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得30
刚刚
慕青应助科研通管家采纳,获得30
刚刚
坦率依柔完成签到,获得积分10
刚刚
woxiangbiye发布了新的文献求助10
3秒前
4秒前
4秒前
卜星凡完成签到,获得积分10
5秒前
7秒前
脑洞疼应助童锦程采纳,获得10
8秒前
9秒前
思源应助QIYU采纳,获得10
9秒前
想喝冰美发布了新的文献求助10
10秒前
suki发布了新的文献求助10
11秒前
Lululu完成签到,获得积分10
12秒前
13秒前
Johnny完成签到,获得积分10
13秒前
双丁宝贝应助12121采纳,获得10
13秒前
学徒发布了新的文献求助10
14秒前
zhang发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
luwei发布了新的文献求助10
18秒前
19秒前
wali完成签到 ,获得积分0
21秒前
祈愿完成签到,获得积分10
21秒前
氘代乙腈是不贵的呀完成签到,获得积分10
22秒前
小罗咩咩发布了新的文献求助10
22秒前
等待的盼波完成签到,获得积分10
22秒前
wminghui惠完成签到 ,获得积分10
22秒前
酷酷薯片发布了新的文献求助10
23秒前
24秒前
椰椰发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490