Developments of Adapted Clothing for Physically Disabled People with Scoliosis Using 3D Geometrical Model

服装 轮廓 脊柱侧凸 计算机科学 过程(计算) 体型 压扁 三维扫描 计算机视觉 人工智能 工程制图 计算机图形学(图像) 工程类 医学 机械工程 外科 考古 历史 操作系统
作者
Sara Mosleh,Mulat Alubel Abtew,Pascal Bruniaux,Guillaume Tartare,Yukang Xu
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (22): 10655-10655 被引量:4
标识
DOI:10.3390/app112210655
摘要

Scoliosis is a deformity of the spine that causes disorders of the rib cage. This makes it difficult to design clothes for affected people without following the shape of the rib cage. This paper presents a new 3D clothing design method based on virtual reality for women with physical disabilities such as scoliosis. The current design method is a variation of the draping techniques commonly used by fashion designers to design clothes on a mannequin or human body. However, the current design process highly considers the skeleton and body scan of the person. The skeleton is used to detect the anthropometric points of the patient, while the body scan allows us to detect the morphological contours at the onset of scoliosis. Thus, both allow us to accurately track the patient’s morphology and atypical shape. The position of the morphological contours is indicated by reference marks that are closely associated with the skeleton. This helps to automatically adapt the garment to the evolution of the patient’s pathology over time. The process of creating the 3D garment was processed based on the 3D model of the thorax, which helps to easily determine the anthropometric points and the morphological curves. Using this data, the geometrical model of the garment could be created with 3D ease allowances. The 2D block pattern was then obtained by flattening the 3D patterns using flattening methods. Finally, various tests were performed considering the evolution of pathology to predict the future garment. These tests validate our geometrical model of the garment with 3D ease allowances by comparing the results with previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈某某完成签到,获得积分10
刚刚
卡皮巴丘完成签到 ,获得积分10
1秒前
周少完成签到,获得积分10
1秒前
陶一二完成签到,获得积分10
3秒前
3秒前
3秒前
DocZhao完成签到 ,获得积分10
4秒前
apt完成签到,获得积分10
4秒前
4秒前
Three完成签到,获得积分10
5秒前
如果多年后完成签到 ,获得积分10
5秒前
SYLH应助solobang采纳,获得10
6秒前
SYLH应助solobang采纳,获得10
6秒前
灰色与青完成签到,获得积分10
6秒前
852应助幸福胡萝卜采纳,获得10
6秒前
虞无声应助年华采纳,获得10
6秒前
7秒前
香菜发布了新的文献求助10
8秒前
hf发布了新的文献求助10
8秒前
10秒前
爱听歌长颈鹿完成签到,获得积分20
10秒前
852应助抓恐龙采纳,获得10
10秒前
11秒前
小小鱼完成签到,获得积分10
11秒前
11秒前
单薄的小鸽子完成签到,获得积分10
12秒前
13秒前
charon完成签到,获得积分20
13秒前
bkagyin应助fff采纳,获得10
13秒前
小宇发布了新的文献求助10
14秒前
14秒前
1111发布了新的文献求助10
14秒前
单薄凌蝶完成签到,获得积分10
15秒前
15秒前
哄哄完成签到,获得积分10
15秒前
求知若渴完成签到,获得积分10
15秒前
ysf完成签到,获得积分10
16秒前
如意航空完成签到,获得积分10
17秒前
洛杉矶的奥斯卡完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678