Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images

医学 H&E染色 数字图像分析 数字化病理学 生存分析 放射科 计算机科学 组织病理学 病理 核医学 染色 内科学 计算机视觉
作者
Jinlong Wang,Lingmin Wu,Yunzhe Zhang,Guowei Ma,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145015-145015 被引量:6
标识
DOI:10.1088/1361-6560/ac1020
摘要

Currently, the incidence of esophageal squamous cell carcinoma (ESCC) in China is high and its prognosis is poor. To evaluate the prognosis of patients with ESCC, we performed computerized quantitative analyses on diagnostic computed tomography (CT) and digital histopathological slices. A retrospective study was conducted to assess the prognosis of ESCC in 153 patients who underwent esophagectomy, and the cohort was selected based on strict clinical criteria. Each patient had an enhanced CT image, and there were two imaging protocols for CT images of all patients. Each patient in the cohort also had a histopathological tissue slide after hematoxylin-eosin staining. Under an electron microscope, the tissue slide was scanned as an image of large size. We then performed quantitative analyses to identify factors related to the prognosis of ESCC on digital histological images and diagnostic CT images. For CT images, we used the radiomics method. For histological images, we designed a set of quantitative features based on machine learning algorithms, such as K-means and principal component analysis. These features describe the patterns of different cell types in histopathological images. Subsequently, we used the survival analysis model established using only CT image features as the baseline. We also compared multiple machine learning models and adopted a five-fold cross-validation method to establish a robust survival model. In establishing survival models, we first used CT image features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.624. Then we used histopathlogical features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.664, which was obviously better than CT's. Lastly, we combined CT image features and histopathological image features to establish survival models. The performance was better than that in the models built using only CT image features or histopathological image features, and the C-index from the regularized Cox model on the test set reached 0.694. We also proved the effectiveness of the quantified histopathological image features in terms of prognosis using the log-rank test. Histopathological image features are more relevant to prognosis than features extracted from CT images using radiomics. The results of this study provide clinicians with a reference to improve the survival rate of patients with ESCC after surgery. These results have implications for advancing the process of explaining the poor prognosis of esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的如风完成签到,获得积分10
1秒前
2秒前
吃猫的鱼完成签到,获得积分10
2秒前
脑洞疼应助润润轩轩采纳,获得10
3秒前
刘文静完成签到,获得积分10
4秒前
Southluuu发布了新的文献求助10
4秒前
chenjyuu发布了新的文献求助10
4秒前
4秒前
粗暴的仙人掌完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
logic发布了新的文献求助10
5秒前
习习应助生动的雨竹采纳,获得10
5秒前
bo完成签到 ,获得积分10
5秒前
迟大猫应助啵乐乐采纳,获得10
6秒前
安雯完成签到 ,获得积分10
6秒前
HuLL完成签到,获得积分10
6秒前
Yolo完成签到 ,获得积分10
6秒前
难过的慕青完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
9秒前
无花果应助sunzhiyu233采纳,获得10
9秒前
韭黄完成签到,获得积分20
9秒前
10秒前
诚c发布了新的文献求助10
10秒前
自然秋柳完成签到 ,获得积分10
10秒前
我是老大应助经法采纳,获得10
10秒前
默默的皮牙子应助经法采纳,获得10
10秒前
orixero应助经法采纳,获得10
10秒前
小马甲应助经法采纳,获得10
10秒前
柚子成精应助经法采纳,获得10
11秒前
小蘑菇应助经法采纳,获得10
11秒前
深情安青应助经法采纳,获得10
11秒前
李爱国应助经法采纳,获得10
11秒前
共享精神应助经法采纳,获得10
11秒前
yyyyyy完成签到 ,获得积分10
11秒前
LL完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759