亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images

医学 H&E染色 数字图像分析 数字化病理学 生存分析 放射科 计算机科学 组织病理学 病理 核医学 染色 内科学 计算机视觉
作者
Jinlong Wang,Lingmin Wu,Yunzhe Zhang,Guowei Ma,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145015-145015 被引量:6
标识
DOI:10.1088/1361-6560/ac1020
摘要

Currently, the incidence of esophageal squamous cell carcinoma (ESCC) in China is high and its prognosis is poor. To evaluate the prognosis of patients with ESCC, we performed computerized quantitative analyses on diagnostic computed tomography (CT) and digital histopathological slices. A retrospective study was conducted to assess the prognosis of ESCC in 153 patients who underwent esophagectomy, and the cohort was selected based on strict clinical criteria. Each patient had an enhanced CT image, and there were two imaging protocols for CT images of all patients. Each patient in the cohort also had a histopathological tissue slide after hematoxylin-eosin staining. Under an electron microscope, the tissue slide was scanned as an image of large size. We then performed quantitative analyses to identify factors related to the prognosis of ESCC on digital histological images and diagnostic CT images. For CT images, we used the radiomics method. For histological images, we designed a set of quantitative features based on machine learning algorithms, such as K-means and principal component analysis. These features describe the patterns of different cell types in histopathological images. Subsequently, we used the survival analysis model established using only CT image features as the baseline. We also compared multiple machine learning models and adopted a five-fold cross-validation method to establish a robust survival model. In establishing survival models, we first used CT image features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.624. Then we used histopathlogical features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.664, which was obviously better than CT's. Lastly, we combined CT image features and histopathological image features to establish survival models. The performance was better than that in the models built using only CT image features or histopathological image features, and the C-index from the regularized Cox model on the test set reached 0.694. We also proved the effectiveness of the quantified histopathological image features in terms of prognosis using the log-rank test. Histopathological image features are more relevant to prognosis than features extracted from CT images using radiomics. The results of this study provide clinicians with a reference to improve the survival rate of patients with ESCC after surgery. These results have implications for advancing the process of explaining the poor prognosis of esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的罡完成签到,获得积分10
28秒前
学习吧完成签到 ,获得积分10
37秒前
席江海完成签到,获得积分10
39秒前
我是老大应助科研通管家采纳,获得10
1分钟前
SciGPT应助Wei采纳,获得10
1分钟前
HAG发布了新的文献求助10
1分钟前
乐乐乐乐乐乐应助大喜子采纳,获得10
2分钟前
赘婿应助Wei采纳,获得10
2分钟前
朴实芷云完成签到,获得积分20
2分钟前
大喜子给大喜子的求助进行了留言
2分钟前
打打应助朴实芷云采纳,获得50
2分钟前
领导范儿应助HAG采纳,获得10
2分钟前
3分钟前
HAG发布了新的文献求助10
3分钟前
3分钟前
深情安青应助YUYUYU采纳,获得10
3分钟前
gszy1975发布了新的文献求助10
3分钟前
yi完成签到 ,获得积分10
4分钟前
共享精神应助Wei采纳,获得10
4分钟前
4分钟前
YUYUYU发布了新的文献求助10
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
Kevin Li完成签到,获得积分10
5分钟前
不安青牛应助Kevin Li采纳,获得10
5分钟前
舒心豪英完成签到 ,获得积分10
5分钟前
6分钟前
ganggang完成签到,获得积分0
6分钟前
ganggangfu完成签到,获得积分0
6分钟前
Shilong发布了新的文献求助10
6分钟前
gszy1975发布了新的文献求助30
6分钟前
HAG完成签到,获得积分10
8分钟前
852应助HAG采纳,获得30
8分钟前
8分钟前
iwsaml完成签到 ,获得积分10
8分钟前
HAG发布了新的文献求助30
8分钟前
Ava应助HAG采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629722
版权声明 601853