Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example

小桶 计算生物学 系统药理学 计算机科学 虚拟筛选 药物发现 传统医学 药理学 化学 生物信息学 医学 药品 生物 基因 转录组 基因表达 生物化学
作者
Zheng Li,Biao Qu,Xiaowen Wu,Hongwei Chen,Jue Wang,Lei Zhou,Xiaoyi Wu,Wei Zhang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:289: 115058-115058 被引量:11
标识
DOI:10.1016/j.jep.2022.115058
摘要

Network pharmacology is extremely adaptive for investigating traditional ethnic drugs, especially the herbal medicines. However, challenges still hang over many related studies due to the limitations in the methodology of conventional network pharmacology.Our work was aimed to investigate the methodology limitations of conventional network pharmacology with Xian-Ling-Gu-Bao (XLGB) as a representative, meanwhile, propose the strategies for coping with these issues.Predicted phytochemical constituents formed virtual XLGB. The constituents in realistic XLGB samples was detected by liquid chromatography-mass spectrometry (LC-MS) to correct the constituent deviation resulted from virtual prediction. Multivariate statistical analysis of quantitative target data were used to reveal the relation of target profile between drug and disease. The key constituents and targets were screened and compared between virtual and realistic XLGB through network analysis. After enrichment analysis, reversing network pharmacology was performed to exclude weak targets and re-construct the interaction from key pathways to key targets. Finally, the core constituents and action mechanism of XLGB were deduced.Significant deviation of phytochemical constituents was found between virtual and realistic XLGB. As expected, this deviation led to a cascade of deviation ranging from deduced key constituents to key targets and key pathways. Moreover, many key KEGG pathways were enriched and screened out, however, they were almost irrelevant to the studied disease. These results systemically illustrated the limitations in the methodology of conventional network pharmacology. Importantly, the strategies for coping with these limitations were proposed, such as high-throughput detection of the realistic samples, multivariate analysis of target profile and combined enrichment analysis. Finally, based on the improved network pharmacology, the medicinal constituents and mechanism of XLGB against osteoarthritis were effectively deduced.Our work highlighted the necessity and proposed the strategies for improving the methodology of conventional network pharmacology. The corrected results from improved network pharmacology provided promising directions for future research on XLGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的翠容完成签到,获得积分10
1秒前
阔达凝天完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
风趣遥完成签到,获得积分10
2秒前
77发布了新的文献求助10
2秒前
华仔应助柔弱雅彤采纳,获得10
3秒前
烟花应助柔弱雅彤采纳,获得10
3秒前
DMTloveforever完成签到,获得积分10
3秒前
陶醉的冷梅完成签到,获得积分10
5秒前
22222发布了新的文献求助20
5秒前
btyjs完成签到,获得积分10
5秒前
哈哈发布了新的文献求助10
6秒前
科研通AI6应助草学研究采纳,获得10
7秒前
Ran发布了新的文献求助10
8秒前
鲁万仇发布了新的文献求助10
8秒前
WYW发布了新的文献求助10
10秒前
11秒前
JamesPei应助苗条的一兰采纳,获得20
12秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
13秒前
Tokgo完成签到,获得积分10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
Jasper应助singlelx89采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640