Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example

小桶 计算生物学 系统药理学 计算机科学 虚拟筛选 药物发现 传统医学 药理学 化学 生物信息学 医学 药品 生物 基因 转录组 生物化学 基因表达
作者
Zheng Li,Biao Qu,Xiaowen Wu,Hongwei Chen,Jue Wang,Lei Zhou,Xiaoyi Wu,Wei Zhang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:289: 115058-115058 被引量:10
标识
DOI:10.1016/j.jep.2022.115058
摘要

Network pharmacology is extremely adaptive for investigating traditional ethnic drugs, especially the herbal medicines. However, challenges still hang over many related studies due to the limitations in the methodology of conventional network pharmacology.Our work was aimed to investigate the methodology limitations of conventional network pharmacology with Xian-Ling-Gu-Bao (XLGB) as a representative, meanwhile, propose the strategies for coping with these issues.Predicted phytochemical constituents formed virtual XLGB. The constituents in realistic XLGB samples was detected by liquid chromatography-mass spectrometry (LC-MS) to correct the constituent deviation resulted from virtual prediction. Multivariate statistical analysis of quantitative target data were used to reveal the relation of target profile between drug and disease. The key constituents and targets were screened and compared between virtual and realistic XLGB through network analysis. After enrichment analysis, reversing network pharmacology was performed to exclude weak targets and re-construct the interaction from key pathways to key targets. Finally, the core constituents and action mechanism of XLGB were deduced.Significant deviation of phytochemical constituents was found between virtual and realistic XLGB. As expected, this deviation led to a cascade of deviation ranging from deduced key constituents to key targets and key pathways. Moreover, many key KEGG pathways were enriched and screened out, however, they were almost irrelevant to the studied disease. These results systemically illustrated the limitations in the methodology of conventional network pharmacology. Importantly, the strategies for coping with these limitations were proposed, such as high-throughput detection of the realistic samples, multivariate analysis of target profile and combined enrichment analysis. Finally, based on the improved network pharmacology, the medicinal constituents and mechanism of XLGB against osteoarthritis were effectively deduced.Our work highlighted the necessity and proposed the strategies for improving the methodology of conventional network pharmacology. The corrected results from improved network pharmacology provided promising directions for future research on XLGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
自由的鹏涛完成签到,获得积分20
6秒前
7秒前
在水一方应助Nayvue采纳,获得10
7秒前
10秒前
Ryan完成签到,获得积分10
11秒前
General完成签到 ,获得积分10
11秒前
谦让汝燕完成签到,获得积分10
13秒前
wellyou完成签到,获得积分10
14秒前
mint完成签到,获得积分10
16秒前
afli完成签到 ,获得积分0
19秒前
20秒前
Yy完成签到 ,获得积分10
23秒前
Nayvue发布了新的文献求助10
25秒前
feng完成签到,获得积分10
25秒前
淡淡的小蘑菇完成签到 ,获得积分10
28秒前
G_Serron完成签到,获得积分10
29秒前
swordshine完成签到,获得积分10
29秒前
Anonymous完成签到,获得积分10
33秒前
medzhou完成签到,获得积分10
37秒前
儒雅的千秋完成签到,获得积分10
45秒前
普鲁卡因发布了新的文献求助10
48秒前
小雯完成签到,获得积分10
49秒前
搞怪梦寒完成签到,获得积分20
50秒前
喵了个咪完成签到 ,获得积分10
51秒前
mc完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
56秒前
57秒前
57秒前
虚幻谷波完成签到,获得积分10
59秒前
ruochenzu发布了新的文献求助10
1分钟前
小马甲应助搞怪梦寒采纳,获得10
1分钟前
firewood完成签到 ,获得积分10
1分钟前
天天快乐应助普鲁卡因采纳,获得10
1分钟前
orixero应助NXK采纳,获得10
1分钟前
bjr完成签到 ,获得积分10
1分钟前
研友_LwlAgn完成签到,获得积分10
1分钟前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022