Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example

小桶 计算生物学 系统药理学 计算机科学 虚拟筛选 药物发现 传统医学 药理学 化学 生物信息学 医学 药品 生物 基因 转录组 基因表达 生物化学
作者
Zheng Li,Biao Qu,Xiaowen Wu,Hongwei Chen,Jue Wang,Lei Zhou,Xiaoyi Wu,Wei Zhang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:289: 115058-115058 被引量:11
标识
DOI:10.1016/j.jep.2022.115058
摘要

Network pharmacology is extremely adaptive for investigating traditional ethnic drugs, especially the herbal medicines. However, challenges still hang over many related studies due to the limitations in the methodology of conventional network pharmacology.Our work was aimed to investigate the methodology limitations of conventional network pharmacology with Xian-Ling-Gu-Bao (XLGB) as a representative, meanwhile, propose the strategies for coping with these issues.Predicted phytochemical constituents formed virtual XLGB. The constituents in realistic XLGB samples was detected by liquid chromatography-mass spectrometry (LC-MS) to correct the constituent deviation resulted from virtual prediction. Multivariate statistical analysis of quantitative target data were used to reveal the relation of target profile between drug and disease. The key constituents and targets were screened and compared between virtual and realistic XLGB through network analysis. After enrichment analysis, reversing network pharmacology was performed to exclude weak targets and re-construct the interaction from key pathways to key targets. Finally, the core constituents and action mechanism of XLGB were deduced.Significant deviation of phytochemical constituents was found between virtual and realistic XLGB. As expected, this deviation led to a cascade of deviation ranging from deduced key constituents to key targets and key pathways. Moreover, many key KEGG pathways were enriched and screened out, however, they were almost irrelevant to the studied disease. These results systemically illustrated the limitations in the methodology of conventional network pharmacology. Importantly, the strategies for coping with these limitations were proposed, such as high-throughput detection of the realistic samples, multivariate analysis of target profile and combined enrichment analysis. Finally, based on the improved network pharmacology, the medicinal constituents and mechanism of XLGB against osteoarthritis were effectively deduced.Our work highlighted the necessity and proposed the strategies for improving the methodology of conventional network pharmacology. The corrected results from improved network pharmacology provided promising directions for future research on XLGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文明杰发布了新的文献求助10
1秒前
隐形曼青应助扶余山本采纳,获得10
1秒前
3秒前
阳光的梦寒完成签到,获得积分10
3秒前
Freddy发布了新的文献求助100
4秒前
4秒前
左岸啊完成签到,获得积分10
5秒前
健忘的心锁完成签到,获得积分10
6秒前
核桃应助phero采纳,获得10
6秒前
7秒前
Jerry发布了新的文献求助10
7秒前
小蘑菇应助16采纳,获得20
8秒前
李健的小迷弟应助阳光珍采纳,获得10
9秒前
贾晓丽发布了新的文献求助10
9秒前
9秒前
刘大双发布了新的文献求助10
10秒前
zhu完成签到,获得积分10
10秒前
从容的海云完成签到,获得积分10
11秒前
hhh完成签到,获得积分20
12秒前
bkagyin应助守望者采纳,获得10
12秒前
12秒前
123完成签到,获得积分20
13秒前
我是老大应助酷酷如楠采纳,获得10
13秒前
温柔的盼雁完成签到,获得积分10
15秒前
华仔应助xjj采纳,获得10
16秒前
Meyako应助英勇的新瑶采纳,获得10
17秒前
17秒前
18秒前
18秒前
19秒前
123发布了新的文献求助10
20秒前
20秒前
20秒前
一一完成签到,获得积分10
21秒前
22秒前
Orange应助帅气东蒽采纳,获得10
22秒前
Mercury发布了新的文献求助200
23秒前
lyu完成签到,获得积分10
23秒前
吃元宵发布了新的文献求助10
24秒前
111发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033