Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example

小桶 计算生物学 系统药理学 计算机科学 虚拟筛选 药物发现 传统医学 药理学 化学 生物信息学 医学 药品 生物 基因 转录组 基因表达 生物化学
作者
Zheng Li,Biao Qu,Xiaowen Wu,Hongwei Chen,Jue Wang,Lei Zhou,Xiaoyi Wu,Wei Zhang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:289: 115058-115058 被引量:11
标识
DOI:10.1016/j.jep.2022.115058
摘要

Network pharmacology is extremely adaptive for investigating traditional ethnic drugs, especially the herbal medicines. However, challenges still hang over many related studies due to the limitations in the methodology of conventional network pharmacology.Our work was aimed to investigate the methodology limitations of conventional network pharmacology with Xian-Ling-Gu-Bao (XLGB) as a representative, meanwhile, propose the strategies for coping with these issues.Predicted phytochemical constituents formed virtual XLGB. The constituents in realistic XLGB samples was detected by liquid chromatography-mass spectrometry (LC-MS) to correct the constituent deviation resulted from virtual prediction. Multivariate statistical analysis of quantitative target data were used to reveal the relation of target profile between drug and disease. The key constituents and targets were screened and compared between virtual and realistic XLGB through network analysis. After enrichment analysis, reversing network pharmacology was performed to exclude weak targets and re-construct the interaction from key pathways to key targets. Finally, the core constituents and action mechanism of XLGB were deduced.Significant deviation of phytochemical constituents was found between virtual and realistic XLGB. As expected, this deviation led to a cascade of deviation ranging from deduced key constituents to key targets and key pathways. Moreover, many key KEGG pathways were enriched and screened out, however, they were almost irrelevant to the studied disease. These results systemically illustrated the limitations in the methodology of conventional network pharmacology. Importantly, the strategies for coping with these limitations were proposed, such as high-throughput detection of the realistic samples, multivariate analysis of target profile and combined enrichment analysis. Finally, based on the improved network pharmacology, the medicinal constituents and mechanism of XLGB against osteoarthritis were effectively deduced.Our work highlighted the necessity and proposed the strategies for improving the methodology of conventional network pharmacology. The corrected results from improved network pharmacology provided promising directions for future research on XLGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浮游应助苗条幻巧采纳,获得10
3秒前
3秒前
hyiyi完成签到,获得积分10
3秒前
服部平次完成签到,获得积分10
3秒前
ding应助任性凤凰采纳,获得10
3秒前
樱悼柳雪发布了新的文献求助10
3秒前
晴云发布了新的文献求助10
4秒前
4秒前
4秒前
科研小宋完成签到 ,获得积分10
4秒前
orixero应助陈子旋采纳,获得10
5秒前
5秒前
科研通AI6应助祁智博采纳,获得30
6秒前
宝宝鼠发布了新的文献求助10
7秒前
7秒前
爆米花应助plu采纳,获得10
7秒前
7秒前
1Yer6发布了新的文献求助10
9秒前
葉鳳怡完成签到 ,获得积分10
9秒前
打打应助221u采纳,获得10
9秒前
慕青应助李子衡采纳,获得10
9秒前
顺颂时祺发布了新的文献求助10
10秒前
嵇南风完成签到,获得积分10
11秒前
lw发布了新的文献求助10
12秒前
Michael完成签到 ,获得积分10
12秒前
DMMM完成签到,获得积分10
12秒前
12秒前
Str0n发布了新的文献求助20
13秒前
15秒前
15秒前
任性凤凰发布了新的文献求助10
16秒前
16秒前
科目三应助bilin采纳,获得10
17秒前
JY完成签到,获得积分10
17秒前
七瑾发布了新的文献求助10
17秒前
研友_VZG7GZ应助刘祺芳采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978990
求助须知:如何正确求助?哪些是违规求助? 4231777
关于积分的说明 13181128
捐赠科研通 4022598
什么是DOI,文献DOI怎么找? 2200899
邀请新用户注册赠送积分活动 1213349
关于科研通互助平台的介绍 1129556