清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example

小桶 计算生物学 系统药理学 计算机科学 虚拟筛选 药物发现 传统医学 药理学 化学 生物信息学 医学 药品 生物 基因 转录组 生物化学 基因表达
作者
Zheng Li,Biao Qu,Xiaowen Wu,Hongwei Chen,Jue Wang,Lei Zhou,Xiaoyi Wu,Wei Zhang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:289: 115058-115058 被引量:10
标识
DOI:10.1016/j.jep.2022.115058
摘要

Network pharmacology is extremely adaptive for investigating traditional ethnic drugs, especially the herbal medicines. However, challenges still hang over many related studies due to the limitations in the methodology of conventional network pharmacology.Our work was aimed to investigate the methodology limitations of conventional network pharmacology with Xian-Ling-Gu-Bao (XLGB) as a representative, meanwhile, propose the strategies for coping with these issues.Predicted phytochemical constituents formed virtual XLGB. The constituents in realistic XLGB samples was detected by liquid chromatography-mass spectrometry (LC-MS) to correct the constituent deviation resulted from virtual prediction. Multivariate statistical analysis of quantitative target data were used to reveal the relation of target profile between drug and disease. The key constituents and targets were screened and compared between virtual and realistic XLGB through network analysis. After enrichment analysis, reversing network pharmacology was performed to exclude weak targets and re-construct the interaction from key pathways to key targets. Finally, the core constituents and action mechanism of XLGB were deduced.Significant deviation of phytochemical constituents was found between virtual and realistic XLGB. As expected, this deviation led to a cascade of deviation ranging from deduced key constituents to key targets and key pathways. Moreover, many key KEGG pathways were enriched and screened out, however, they were almost irrelevant to the studied disease. These results systemically illustrated the limitations in the methodology of conventional network pharmacology. Importantly, the strategies for coping with these limitations were proposed, such as high-throughput detection of the realistic samples, multivariate analysis of target profile and combined enrichment analysis. Finally, based on the improved network pharmacology, the medicinal constituents and mechanism of XLGB against osteoarthritis were effectively deduced.Our work highlighted the necessity and proposed the strategies for improving the methodology of conventional network pharmacology. The corrected results from improved network pharmacology provided promising directions for future research on XLGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的孤容完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
9秒前
13秒前
Air完成签到 ,获得积分10
15秒前
逐梦小绳完成签到,获得积分10
20秒前
曾经不言完成签到 ,获得积分10
21秒前
huangzsdy完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
27秒前
共享精神应助河神采纳,获得10
28秒前
喜悦的水云完成签到 ,获得积分10
29秒前
30秒前
暮晓见完成签到 ,获得积分10
32秒前
hugeyoung完成签到,获得积分10
34秒前
carl完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
47秒前
迅速的幻雪完成签到 ,获得积分10
50秒前
vousme完成签到 ,获得积分10
51秒前
52秒前
量子星尘发布了新的文献求助10
54秒前
清客完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
Frank发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
传奇完成签到 ,获得积分10
1分钟前
科研通AI5应助故意的烧鹅采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
racill完成签到 ,获得积分10
1分钟前
kaitohan完成签到 ,获得积分10
1分钟前
Frank完成签到,获得积分10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
czj完成签到 ,获得积分10
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
啊呀麦克发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
雨过天晴完成签到 ,获得积分10
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666449
求助须知:如何正确求助?哪些是违规求助? 3225448
关于积分的说明 9763038
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607593
邀请新用户注册赠送积分活动 759271
科研通“疑难数据库(出版商)”最低求助积分说明 735188