亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A convolutional neural network model for battery capacity fade curve prediction using early life data

淡出 电池(电) 翻转(web设计) 计算机科学 卷积神经网络 人工神经网络 可靠性工程 模拟 工程类 人工智能 量子力学 操作系统 物理 万维网 功率(物理)
作者
Saurabh Saxena,Logan Ward,Joseph Kubal,Wenquan Lu,Susan Babinec,Noah H. Paulson
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:542: 231736-231736 被引量:62
标识
DOI:10.1016/j.jpowsour.2022.231736
摘要

Early prediction of battery performance degradation trends can facilitate research of new materials and cell designs, rapid deployment of batteries in real-world applications, timely replacement of batteries in critical applications, and even the secondary use market. In this study, we design a convolutional neural network model to predict the entire battery capacity fade curve – a critical indicator of battery performance degradation – using first 100 cycles of data (∼ three weeks of testing). We use the discharge voltage-capacity curves as input to the model and automate the feature extraction process through the convolutional layers of the network. Our approach can predict the per cycle capacity fade rate and rollover cycle (knee point) in the capacity fade curve, which indicate the onset of rapid capacity decay. On the publicly available graphite/LiFePO4 battery dataset, optimized networks predict the capacity fade curves, rollover cycle, and end of life with 3.7% (worst-case), 19%, and 17% mean absolute percentage errors, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karol发布了新的文献求助10
3秒前
7788完成签到,获得积分10
3秒前
无000发布了新的文献求助10
3秒前
科研通AI6.1应助一见喜采纳,获得10
11秒前
14秒前
20秒前
克劳德发布了新的文献求助10
20秒前
一见喜发布了新的文献求助10
26秒前
CodeCraft应助黑神白了采纳,获得10
27秒前
领导范儿应助无000采纳,获得10
31秒前
39秒前
youy完成签到 ,获得积分10
45秒前
47秒前
边雨完成签到 ,获得积分10
53秒前
53秒前
千空完成签到 ,获得积分10
54秒前
58秒前
kingqjack完成签到,获得积分10
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
克劳德完成签到,获得积分10
1分钟前
bkagyin应助悦耳青梦采纳,获得10
1分钟前
nolan完成签到 ,获得积分10
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zztop发布了新的文献求助10
1分钟前
ZanE完成签到,获得积分10
1分钟前
1分钟前
和和和完成签到,获得积分10
1分钟前
华仔应助沉默的倔驴采纳,获得10
1分钟前
nanhe698发布了新的文献求助10
1分钟前
Fan完成签到 ,获得积分0
1分钟前
1分钟前
nanhe698完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
英姑应助沉默的倔驴采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746628
求助须知:如何正确求助?哪些是违规求助? 5437255
关于积分的说明 15355719
捐赠科研通 4886684
什么是DOI,文献DOI怎么找? 2627339
邀请新用户注册赠送积分活动 1575825
关于科研通互助平台的介绍 1532573