亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A convolutional neural network model for battery capacity fade curve prediction using early life data

淡出 电池(电) 翻转(web设计) 计算机科学 卷积神经网络 人工神经网络 可靠性工程 模拟 工程类 人工智能 量子力学 操作系统 物理 万维网 功率(物理)
作者
Saurabh Saxena,Logan Ward,Joseph Kubal,Wenquan Lu,Susan Babinec,Noah H. Paulson
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:542: 231736-231736 被引量:62
标识
DOI:10.1016/j.jpowsour.2022.231736
摘要

Early prediction of battery performance degradation trends can facilitate research of new materials and cell designs, rapid deployment of batteries in real-world applications, timely replacement of batteries in critical applications, and even the secondary use market. In this study, we design a convolutional neural network model to predict the entire battery capacity fade curve – a critical indicator of battery performance degradation – using first 100 cycles of data (∼ three weeks of testing). We use the discharge voltage-capacity curves as input to the model and automate the feature extraction process through the convolutional layers of the network. Our approach can predict the per cycle capacity fade rate and rollover cycle (knee point) in the capacity fade curve, which indicate the onset of rapid capacity decay. On the publicly available graphite/LiFePO4 battery dataset, optimized networks predict the capacity fade curves, rollover cycle, and end of life with 3.7% (worst-case), 19%, and 17% mean absolute percentage errors, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
量子星尘发布了新的文献求助30
9秒前
Hello应助泪雨煊采纳,获得10
15秒前
24秒前
29秒前
31秒前
泪雨煊完成签到,获得积分10
32秒前
泪雨煊发布了新的文献求助10
35秒前
Otter完成签到,获得积分10
37秒前
柳贯一完成签到,获得积分10
48秒前
科研通AI6.1应助任性学姐采纳,获得10
51秒前
58秒前
任性学姐发布了新的文献求助10
1分钟前
务实的翠风完成签到,获得积分10
1分钟前
小蘑菇应助务实的翠风采纳,获得10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
Akim应助qc采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
zzz关闭了zzz文献求助
1分钟前
朴实的河马完成签到,获得积分10
1分钟前
任性学姐发布了新的文献求助10
2分钟前
耶格尔完成签到 ,获得积分10
2分钟前
weibo完成签到,获得积分10
2分钟前
光亮的万天完成签到 ,获得积分10
2分钟前
轻松戎发布了新的文献求助10
2分钟前
迷人的焦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英俊的铭应助白山采纳,获得10
2分钟前
桐桐应助轻松戎采纳,获得10
2分钟前
大林完成签到,获得积分10
2分钟前
yb完成签到,获得积分10
2分钟前
安静含卉发布了新的文献求助30
2分钟前
2分钟前
充电宝应助任性学姐采纳,获得10
2分钟前
萝卜发布了新的文献求助10
2分钟前
luan完成签到,获得积分10
2分钟前
移动马桶完成签到 ,获得积分10
2分钟前
萝卜完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540