亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tendency完成签到 ,获得积分10
3秒前
4秒前
潇洒的语蝶完成签到 ,获得积分10
7秒前
8秒前
科研通AI6应助jc哥采纳,获得10
8秒前
正直千山发布了新的文献求助20
8秒前
10秒前
11秒前
传奇3应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
李爱国应助彭浩采纳,获得10
19秒前
24秒前
大气的初雪完成签到,获得积分10
26秒前
Yrawn完成签到 ,获得积分10
29秒前
wer发布了新的文献求助10
31秒前
浮游应助千岛采纳,获得10
32秒前
西瓜草莓火龙果完成签到,获得积分10
33秒前
Hey完成签到 ,获得积分10
33秒前
coco完成签到 ,获得积分10
35秒前
BowieHuang应助果小镁采纳,获得10
37秒前
40秒前
44秒前
44秒前
Ava应助清脆靳采纳,获得10
47秒前
威武皮带完成签到,获得积分10
48秒前
48秒前
Epiphany发布了新的文献求助10
50秒前
阔口阔落发布了新的文献求助10
51秒前
qiu发布了新的文献求助10
54秒前
朴素的幻灵完成签到,获得积分10
54秒前
阔口阔落完成签到,获得积分10
58秒前
1分钟前
wer完成签到,获得积分10
1分钟前
1分钟前
巫衣絮完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561238
求助须知:如何正确求助?哪些是违规求助? 4646374
关于积分的说明 14678419
捐赠科研通 4587681
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344