Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐per爱豆发布了新的文献求助10
1秒前
一一关注了科研通微信公众号
2秒前
yumu关注了科研通微信公众号
2秒前
3秒前
xmy驳回了充电宝应助
3秒前
8秒前
团团完成签到,获得积分10
8秒前
張医铄完成签到,获得积分10
8秒前
9秒前
Ann发布了新的文献求助10
9秒前
10秒前
幽壑之潜蛟应助星辰采纳,获得10
10秒前
11秒前
可爱的函函应助动次打次采纳,获得10
11秒前
情怀应助李麟采纳,获得10
11秒前
kikiii完成签到 ,获得积分10
12秒前
如意烨霖发布了新的文献求助20
12秒前
13秒前
AliHamid发布了新的文献求助10
14秒前
14秒前
彭于晏应助毕十三采纳,获得10
14秒前
coco完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
研学完成签到,获得积分10
15秒前
Lillian发布了新的文献求助10
17秒前
娃娃兵完成签到,获得积分10
18秒前
mint发布了新的文献求助10
19秒前
xuulanni发布了新的文献求助10
20秒前
21秒前
白学长应助shuangcheng采纳,获得10
21秒前
21秒前
22秒前
23秒前
土豆丝P应助AliHamid采纳,获得10
23秒前
23秒前
闪闪雨雪完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462526
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050624
捐赠科研通 2745705
什么是DOI,文献DOI怎么找? 1506521
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677