亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
千里草完成签到,获得积分10
2秒前
彭日晓发布了新的文献求助10
4秒前
significant发布了新的文献求助10
7秒前
16秒前
30秒前
42秒前
1分钟前
忍忍发布了新的文献求助30
1分钟前
kingcoffee完成签到 ,获得积分10
1分钟前
忍忍完成签到 ,获得积分10
1分钟前
彭日晓完成签到,获得积分10
2分钟前
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
3分钟前
sho完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
Ysn完成签到,获得积分10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
Lny发布了新的文献求助20
6分钟前
6分钟前
slayers完成签到 ,获得积分10
7分钟前
7分钟前
story发布了新的文献求助30
7分钟前
7分钟前
Owen应助光亮雁玉采纳,获得10
8分钟前
SL完成签到,获得积分10
8分钟前
乐乐应助story采纳,获得10
8分钟前
科研通AI5应助光亮雁玉采纳,获得10
8分钟前
8分钟前
爆米花应助光亮雁玉采纳,获得10
8分钟前
Lny发布了新的文献求助20
8分钟前
冰西瓜完成签到 ,获得积分0
8分钟前
科目三应助光亮雁玉采纳,获得10
8分钟前
8分钟前
科研通AI5应助光亮雁玉采纳,获得10
8分钟前
鲁棒的砰砰砰完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955