Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的阁应助liu采纳,获得10
1秒前
蓝天发布了新的文献求助10
1秒前
ZHL完成签到,获得积分20
2秒前
2秒前
852应助小僧采纳,获得10
2秒前
Angel发布了新的文献求助10
3秒前
爱笑安露完成签到,获得积分10
5秒前
今后应助杨杨采纳,获得10
5秒前
都不好听完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Akim应助年年采纳,获得10
9秒前
海棠花未眠完成签到,获得积分10
9秒前
Akim应助单薄的醉蓝采纳,获得30
9秒前
搜集达人应助gyq采纳,获得10
9秒前
闲人小年完成签到 ,获得积分10
10秒前
隐形的从阳完成签到 ,获得积分10
11秒前
华仔应助李子园采纳,获得10
11秒前
12秒前
莫言发布了新的文献求助10
12秒前
泡泡完成签到,获得积分10
12秒前
13秒前
FashionBoy应助落后的乌龟采纳,获得10
13秒前
赘婿应助真实的火车采纳,获得10
14秒前
15秒前
15秒前
15秒前
15秒前
916关闭了916文献求助
15秒前
耶耶完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
mo发布了新的文献求助10
19秒前
齐天小圣完成签到 ,获得积分10
19秒前
20秒前
可靠幻然完成签到 ,获得积分10
20秒前
小鹿发布了新的文献求助10
20秒前
Ava应助Tang_Tang采纳,获得20
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467