Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脱壳金蝉发布了新的文献求助10
1秒前
彭于彦祖应助Oatmeal5888采纳,获得50
3秒前
无极微光应助huaming采纳,获得20
3秒前
JamesPei应助田国兵采纳,获得10
4秒前
天天快乐应助漏漏漏采纳,获得30
5秒前
hglll445完成签到,获得积分10
6秒前
leelmomimi完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI6应助决明采纳,获得10
8秒前
既晴复雨发布了新的文献求助10
11秒前
13秒前
14秒前
脑洞疼应助我要创新点采纳,获得10
15秒前
科研通AI6应助Sj泽采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
万能图书馆应助Judy采纳,获得10
17秒前
17秒前
17秒前
18秒前
20秒前
qingmoheng应助djbj2022采纳,获得10
20秒前
简单的大哥完成签到,获得积分10
21秒前
22秒前
22秒前
zzdd应助科研通管家采纳,获得10
22秒前
zzdd应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
dew应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
zzdd应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
zzdd应助科研通管家采纳,获得10
23秒前
dew应助科研通管家采纳,获得10
23秒前
Zx_1993应助科研通管家采纳,获得20
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310