Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyao6688发布了新的文献求助30
刚刚
1秒前
科研通AI6应助灵巧涵雁采纳,获得10
1秒前
1秒前
头哥应助如意幼枫采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助善良谷蓝采纳,获得10
2秒前
是个宝耶完成签到 ,获得积分10
2秒前
2秒前
甜野发布了新的文献求助10
3秒前
可爱的函函应助liuuu采纳,获得10
3秒前
3秒前
Markov发布了新的文献求助30
3秒前
4秒前
文献自由发布了新的文献求助10
5秒前
orixero应助古德猫宁采纳,获得10
5秒前
从容映易完成签到,获得积分10
5秒前
5秒前
阿卡啵糖发布了新的文献求助10
6秒前
催催催发布了新的文献求助10
6秒前
hehe完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
一天给一天的求助进行了留言
9秒前
9秒前
9秒前
大模型应助搞怪的听蓉采纳,获得10
9秒前
如意幼枫完成签到,获得积分10
10秒前
隐形曼青应助hehe采纳,获得10
10秒前
YJ发布了新的文献求助10
11秒前
11秒前
JamesPei应助宝宝采纳,获得10
11秒前
yy应助蜗牛采纳,获得10
12秒前
SciGPT应助yaoyao6688采纳,获得30
12秒前
紫菜完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674