Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMZ完成签到 ,获得积分10
刚刚
FDD发布了新的文献求助10
1秒前
仲某某完成签到,获得积分10
2秒前
3秒前
4秒前
夏日风息完成签到,获得积分10
6秒前
薛薛发布了新的文献求助10
7秒前
吃个核桃补补脑完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Z17发布了新的文献求助10
8秒前
9秒前
hh哈哈完成签到,获得积分10
9秒前
DC-CIK军团完成签到 ,获得积分10
10秒前
10秒前
打打应助King16采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
16秒前
一杯奶茶完成签到,获得积分10
17秒前
17秒前
sherry完成签到,获得积分10
17秒前
karate09judges完成签到 ,获得积分10
18秒前
阿芝发布了新的文献求助10
18秒前
大海123发布了新的文献求助10
18秒前
阳佟雨南完成签到,获得积分10
19秒前
19秒前
chen发布了新的文献求助10
21秒前
katsuras发布了新的文献求助10
22秒前
Hello应助zong采纳,获得10
22秒前
凌鸣发布了新的文献求助10
22秒前
22秒前
23秒前
NexusExplorer应助继续加油吧采纳,获得10
24秒前
24秒前
eason应助大海123采纳,获得10
24秒前
25秒前
云长两里乌完成签到 ,获得积分10
25秒前
讨厌胡萝卜完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526