Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助你找谁哇采纳,获得10
刚刚
静谧180完成签到,获得积分10
刚刚
刚刚
耶耶发布了新的文献求助10
刚刚
davedavedave完成签到 ,获得积分10
1秒前
1秒前
1秒前
刘gugu发布了新的文献求助10
1秒前
2秒前
3秒前
Moonpie发布了新的文献求助10
3秒前
江山完成签到,获得积分10
3秒前
4秒前
火锅发布了新的文献求助20
4秒前
Nangong发布了新的文献求助10
5秒前
饶渔完成签到,获得积分10
5秒前
小蘑材发布了新的文献求助10
5秒前
白一木发布了新的文献求助10
5秒前
方方完成签到,获得积分10
5秒前
tuyfytjt发布了新的文献求助10
6秒前
6秒前
CipherSage应助大月采纳,获得10
6秒前
6秒前
清风发布了新的文献求助10
7秒前
沉默雅寒发布了新的文献求助150
7秒前
Yu完成签到,获得积分10
7秒前
彭于晏应助RM采纳,获得10
7秒前
infe发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
儒雅不弱发布了新的文献求助30
8秒前
HHW完成签到 ,获得积分10
9秒前
所所应助南风采纳,获得30
9秒前
9秒前
9秒前
10秒前
秦雄完成签到,获得积分20
10秒前
10秒前
SciGPT应助Liam采纳,获得10
10秒前
秀丽千山发布了新的文献求助10
10秒前
saf0852完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685