Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation

人工智能 分割 计算机科学 模式识别(心理学) 转化(遗传学) 图像分割 编码器 情态动词 计算机视觉 尺度空间分割 特征(语言学) 图像(数学) 医学影像学
作者
Feng Yang,Fangxuan Liang,Liyun Lu,Mengxiao Yin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103849-103849
标识
DOI:10.1016/j.bspc.2022.103849
摘要

Unsupervised domain adaptation multi-modal medical image segmentation method is used for joint training to realize the segmentation of different modal medical images at the same time. Since the domain shift of different modal images and the limited labeled medical images, the accuracy of these methods needs to be further improved. In this work, we present a novel unsupervised domain adaptation method, named as Dual Attention-guided and Learnable spatial transformation data Augmentation multi-modal unsupervised medical image segmentation (DALA). Firstly, this paper mainly introduces the position and channel Dual Attention Mechanism (Dual Attent-M) into the low-level encoder to improve the feature extraction ability of the network and enhance the domain adaptation training of the network. Secondly, a learnable Spatial Transformation data Augmentation method (Spatial Tran-Aug) is further proposed to learn the spatial mapping relationship between the source image and the target image to synthesize high-quality data for training. Experiments on the Multi-Modality Whole Heart Segmentation (MMWHS) dataset show that compared with the multi-modal segmentation methods such as PnP-AdaNet, SynSeg-Net, AdaOutput, CyCADA, Prior SIF and SIFA, the proposed method DALA can achieve better segmentation results, and the average DICE predicted by CT and MR is increased to 78.2% and 67.9%, the mean ASSD decreased to 4.4 and 4.7. • A novel unsupervised domain adaptive multi-modal medical image segmentation method guided by dual attention mechanism. • A learnable spatial transformation data augmentation method to simulate the slight changes of medical image structure. • Proposed method can achieve better multi-modal segmentation results with the limited labeled medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
正直小鸭子完成签到,获得积分10
1秒前
2秒前
小马甲应助愤怒的小鸟采纳,获得100
2秒前
浮游应助好旺采纳,获得10
2秒前
xumingli关注了科研通微信公众号
2秒前
靖柔发布了新的文献求助20
2秒前
明月发布了新的文献求助10
2秒前
怡宝1223发布了新的文献求助10
3秒前
小二郎应助852采纳,获得10
3秒前
包容的映天完成签到 ,获得积分10
3秒前
飞阳完成签到,获得积分10
4秒前
zyq发布了新的文献求助10
5秒前
汉堡包应助友好初夏采纳,获得10
5秒前
研友_VZG7GZ应助从容飞阳采纳,获得10
6秒前
6秒前
无花果应助LiChard采纳,获得20
6秒前
6秒前
Jasper应助光亮念文采纳,获得10
6秒前
wendy关注了科研通微信公众号
8秒前
Owen应助李文娜采纳,获得10
9秒前
9秒前
漂亮凌旋完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助安寒采纳,获得10
11秒前
好旺完成签到,获得积分10
11秒前
平常盼易完成签到,获得积分20
11秒前
Hello应助自由飞翔采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
麋鹿心愿完成签到,获得积分20
12秒前
EatFish完成签到,获得积分10
13秒前
诚心宛秋完成签到,获得积分10
13秒前
sun发布了新的文献求助10
13秒前
wtf52018发布了新的文献求助10
13秒前
13秒前
小鱼儿完成签到,获得积分10
13秒前
清脆冷雁发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434169
求助须知:如何正确求助?哪些是违规求助? 4546461
关于积分的说明 14202586
捐赠科研通 4466363
什么是DOI,文献DOI怎么找? 2448045
邀请新用户注册赠送积分活动 1439020
关于科研通互助平台的介绍 1415914