计算机科学
过度拟合
特征(语言学)
人工智能
模式识别(心理学)
帧(网络)
特征提取
残余物
一般化
计算机视觉
算法
人工神经网络
数学
语言学
电信
数学分析
哲学
作者
Xie Renjun,Junliang Yuan,Yi Wu,Mengcheng Shu
出处
期刊:Geofluids
[Hindawi Publishing Corporation]
日期:2022-04-08
卷期号:2022: 1-9
被引量:9
摘要
In view of the low accuracy of existing tomographic detection methods, in order to improve the accuracy of tomographic detection, a tomographic detection method based on residual network and Faster R-CNN is proposed. First, input the image into the ResNet-50 feature extraction network to obtain the corresponding feature map, then use the RPN structure to generate the candidate frame, and project the candidate frame generated by the RPN to the feature map to obtain the corresponding feature matrix, and finally, through the ROI pooling layer, each of the feature matrix is scaled to a fixed-size feature map, and then the feature map is flattened through a series of fully connected layers to obtain the prediction result. ResNet-50 mainly solves the problem of network degradation and overfitting caused by deepening of the network layer when extracting the deep features of faults. Faster R-CNN realizes end-to-end training, combines the advantages of ResNet-50 and Faster R-CNN, and has a precise positioning efficiency. The accuracy of detecting faults reaches 90%. The data enhancement is further optimized, the generalization ability of the network is improved, the detection results of the network are optimized, and the accuracy of fault detection is effectively improved, and the feasibility of the method is verified by actual seismic data.
科研通智能强力驱动
Strongly Powered by AbleSci AI