U-Net: A valuable encoder-decoder architecture for liver tumors segmentation in CT images

分割 编码器 计算机科学 人工智能 转移 模式识别(心理学) 图像分割 放射科 医学 癌症 内科学 操作系统
作者
Hanene Sahli,Amine Ben Slama,Salam Labidi
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:30 (1): 45-56 被引量:15
标识
DOI:10.3233/xst-210993
摘要

This study proposes a new predictive segmentation method for liver tumors detection using computed tomography (CT) liver images. In the medical imaging field, the exact localization of metastasis lesions after acquisition faces persistent problems both for diagnostic aid and treatment effectiveness. Therefore, the improvement in the diagnostic process is substantially crucial in order to increase the success chance of the management and the therapeutic follow-up. The proposed procedure highlights a computerized approach based on an encoder-decoder structure in order to provide volumetric analysis of pathologic tumors. Specifically, we developed an automatic algorithm for the liver tumors defect segmentation through the Seg-Net and U-Net architectures from metastasis CT images. In this study, we collected a dataset of 200 pathologically confirmed metastasis cancer cases. A total of 8,297 CT image slices of these cases were used developing and optimizing the proposed segmentation architecture. The model was trained and validated using 170 and 30 cases or 85% and 15% of the CT image data, respectively. Study results demonstrate the strength of the proposed approach that reveals the superlative segmentation performance as evaluated using following indices including F1-score = 0.9573, Recall = 0.9520, IOU = 0.9654, Binary cross entropy = 0.0032 and p-value <0.05, respectively. In comparison to state-of-the-art techniques, the proposed method yields a higher precision rate by specifying metastasis tumor position.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
在水一方应助刘大可采纳,获得10
3秒前
FIGMA发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
NexusExplorer应助我劝告了风采纳,获得10
5秒前
熙悦完成签到,获得积分10
5秒前
BILNQPL发布了新的文献求助30
7秒前
mh发布了新的文献求助10
7秒前
桐桐应助YJ采纳,获得10
8秒前
8秒前
8秒前
liu发布了新的文献求助10
8秒前
hkh发布了新的文献求助10
9秒前
10秒前
10秒前
maxilily发布了新的文献求助20
10秒前
英俊的铭应助Cole1采纳,获得10
10秒前
like完成签到,获得积分10
10秒前
12秒前
科研通AI5应助高贵从寒采纳,获得10
12秒前
zcc完成签到 ,获得积分10
12秒前
12秒前
orixero应助阿辉采纳,获得10
13秒前
13秒前
14秒前
14秒前
顾矜应助读研读研采纳,获得10
14秒前
莱菲发布了新的文献求助10
14秒前
15秒前
zhang完成签到,获得积分10
17秒前
17秒前
伟少完成签到,获得积分10
17秒前
wangjie发布了新的文献求助10
18秒前
FIGMA完成签到,获得积分10
18秒前
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206603
求助须知:如何正确求助?哪些是违规求助? 4384934
关于积分的说明 13655216
捐赠科研通 4243299
什么是DOI,文献DOI怎么找? 2328013
邀请新用户注册赠送积分活动 1325687
关于科研通互助平台的介绍 1277872