U-Net: A valuable encoder-decoder architecture for liver tumors segmentation in CT images

分割 编码器 计算机科学 人工智能 转移 模式识别(心理学) 图像分割 放射科 医学 癌症 内科学 操作系统
作者
Hanene Sahli,Amine Ben Slama,Salam Labidi
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:30 (1): 45-56 被引量:15
标识
DOI:10.3233/xst-210993
摘要

This study proposes a new predictive segmentation method for liver tumors detection using computed tomography (CT) liver images. In the medical imaging field, the exact localization of metastasis lesions after acquisition faces persistent problems both for diagnostic aid and treatment effectiveness. Therefore, the improvement in the diagnostic process is substantially crucial in order to increase the success chance of the management and the therapeutic follow-up. The proposed procedure highlights a computerized approach based on an encoder-decoder structure in order to provide volumetric analysis of pathologic tumors. Specifically, we developed an automatic algorithm for the liver tumors defect segmentation through the Seg-Net and U-Net architectures from metastasis CT images. In this study, we collected a dataset of 200 pathologically confirmed metastasis cancer cases. A total of 8,297 CT image slices of these cases were used developing and optimizing the proposed segmentation architecture. The model was trained and validated using 170 and 30 cases or 85% and 15% of the CT image data, respectively. Study results demonstrate the strength of the proposed approach that reveals the superlative segmentation performance as evaluated using following indices including F1-score = 0.9573, Recall = 0.9520, IOU = 0.9654, Binary cross entropy = 0.0032 and p-value <0.05, respectively. In comparison to state-of-the-art techniques, the proposed method yields a higher precision rate by specifying metastasis tumor position.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想把太阳揣兜里完成签到,获得积分10
1秒前
老张完成签到,获得积分10
1秒前
秃瓢完成签到,获得积分10
2秒前
one完成签到 ,获得积分10
2秒前
2秒前
Hina完成签到,获得积分10
2秒前
钟垠州应助jjj采纳,获得1000
2秒前
meizi0109完成签到 ,获得积分10
4秒前
4秒前
xdd完成签到,获得积分10
4秒前
无花果应助Lengbo采纳,获得10
4秒前
善良紫完成签到,获得积分10
5秒前
老迟到的友菱完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助30
8秒前
Lengbo发布了新的文献求助10
8秒前
zy大章鱼完成签到,获得积分10
8秒前
温暖紫菜完成签到,获得积分10
9秒前
pebble完成签到,获得积分10
9秒前
酷波er应助小鱼医生采纳,获得10
10秒前
Survive完成签到,获得积分10
10秒前
懵懂的明辉完成签到,获得积分10
11秒前
巧克力手印完成签到,获得积分10
11秒前
观莲客完成签到,获得积分10
12秒前
魔幻的锦程完成签到,获得积分10
13秒前
whyme完成签到,获得积分10
13秒前
踏实的盼秋完成签到,获得积分10
14秒前
开心的谷兰完成签到,获得积分10
14秒前
3230600402发布了新的文献求助30
15秒前
fool完成签到,获得积分10
15秒前
16秒前
yinger1984完成签到,获得积分10
16秒前
zh完成签到,获得积分10
16秒前
lhl完成签到,获得积分10
17秒前
几又完成签到,获得积分10
17秒前
起风了完成签到 ,获得积分10
17秒前
星月夜完成签到,获得积分10
17秒前
zr完成签到,获得积分10
17秒前
Nick应助hi_traffic采纳,获得20
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478