An imputation approach using subdistribution weights for deep survival analysis with competing events

计算机科学 预处理器 审查(临床试验) 子网 事件(粒子物理) 人工智能 数据挖掘 生存分析 插补(统计学) 比例危险模型 机器学习 统计 缺少数据 数学 量子力学 物理 计算机安全
作者
Shekoufeh Gorgi Zadeh,Charlotte Behning,Matthias Schmid
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:1
标识
DOI:10.1038/s41598-022-07828-7
摘要

Abstract With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution of survival times directly from the predictor variables without making strong assumptions on the underlying stochastic process. In survival analysis, it is common to observe several types of events, also called competing events. The occurrences of these competing events are usually not independent of one another and have to be incorporated in the modeling process in addition to censoring. In classical survival analysis, a popular method to incorporate competing events is the subdistribution hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only few architectures have been proposed to model the distribution of time to a specific event in a competing events situation. These architectures are characterized by a separate subnetwork/pathway per event, leading to large networks with huge amounts of parameters that may become difficult to train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates weights derived from a time-discrete version of the classical subdistribution hazard model. With this, it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的傲霜完成签到,获得积分10
刚刚
华仔应助服部平次采纳,获得10
1秒前
想自由发布了新的文献求助10
1秒前
脑洞疼应助ADreamPen采纳,获得10
2秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得30
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
JJ完成签到,获得积分10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
5秒前
anwen发布了新的文献求助10
5秒前
快乐滑板应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
zzzkyt发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
嗯哼完成签到,获得积分10
7秒前
9秒前
9秒前
虚心盼晴发布了新的文献求助10
10秒前
11秒前
11秒前
qql发布了新的文献求助10
12秒前
13秒前
13秒前
jeffery发布了新的文献求助10
14秒前
yy发布了新的文献求助10
14秒前
WM应助xh采纳,获得10
16秒前
老塔完成签到,获得积分10
17秒前
saberynn发布了新的文献求助10
17秒前
小黄发布了新的文献求助10
18秒前
18秒前
Yang应助读不完的文献啊采纳,获得10
19秒前
20秒前
21秒前
哈哈发布了新的文献求助30
22秒前
老塔发布了新的文献求助30
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358641
求助须知:如何正确求助?哪些是违规求助? 2981750
关于积分的说明 8700446
捐赠科研通 2663412
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675116
邀请新用户注册赠送积分活动 666160