亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An imputation approach using subdistribution weights for deep survival analysis with competing events

计算机科学 预处理器 审查(临床试验) 子网 事件(粒子物理) 人工智能 数据挖掘 生存分析 插补(统计学) 比例危险模型 机器学习 统计 缺少数据 数学 量子力学 物理 计算机安全
作者
Shekoufeh Gorgi Zadeh,Charlotte Behning,Matthias Schmid
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:1
标识
DOI:10.1038/s41598-022-07828-7
摘要

Abstract With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution of survival times directly from the predictor variables without making strong assumptions on the underlying stochastic process. In survival analysis, it is common to observe several types of events, also called competing events. The occurrences of these competing events are usually not independent of one another and have to be incorporated in the modeling process in addition to censoring. In classical survival analysis, a popular method to incorporate competing events is the subdistribution hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only few architectures have been proposed to model the distribution of time to a specific event in a competing events situation. These architectures are characterized by a separate subnetwork/pathway per event, leading to large networks with huge amounts of parameters that may become difficult to train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates weights derived from a time-discrete version of the classical subdistribution hazard model. With this, it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
nannan完成签到 ,获得积分10
25秒前
小马甲应助sunshine采纳,获得30
50秒前
57秒前
碧蓝的万宝路完成签到 ,获得积分10
59秒前
千里草发布了新的文献求助10
1分钟前
sunshine发布了新的文献求助30
1分钟前
1分钟前
无花果应助Sience采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Sience发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lalala完成签到,获得积分10
2分钟前
祖宛凝完成签到,获得积分10
2分钟前
2分钟前
张秋贤完成签到,获得积分10
2分钟前
陈如馨发布了新的文献求助10
2分钟前
3分钟前
JamesPei应助hms采纳,获得10
3分钟前
swg发布了新的文献求助10
3分钟前
曹官子完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
hms完成签到 ,获得积分10
5分钟前
hms发布了新的文献求助10
5分钟前
孙孙应助科研通管家采纳,获得10
5分钟前
孙孙应助科研通管家采纳,获得10
5分钟前
严珍珍完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
简因完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
大个应助Nill采纳,获得10
7分钟前
leo完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
dagangwood完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611884
求助须知:如何正确求助?哪些是违规求助? 4017289
关于积分的说明 12436182
捐赠科研通 3699253
什么是DOI,文献DOI怎么找? 2040064
邀请新用户注册赠送积分活动 1072855
科研通“疑难数据库(出版商)”最低求助积分说明 956546