An imputation approach using subdistribution weights for deep survival analysis with competing events

计算机科学 预处理器 审查(临床试验) 子网 事件(粒子物理) 人工智能 数据挖掘 生存分析 插补(统计学) 比例危险模型 机器学习 统计 缺少数据 数学 物理 计算机安全 量子力学
作者
Shekoufeh Gorgi Zadeh,Charlotte Behning,Matthias Schmid
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:1
标识
DOI:10.1038/s41598-022-07828-7
摘要

Abstract With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution of survival times directly from the predictor variables without making strong assumptions on the underlying stochastic process. In survival analysis, it is common to observe several types of events, also called competing events. The occurrences of these competing events are usually not independent of one another and have to be incorporated in the modeling process in addition to censoring. In classical survival analysis, a popular method to incorporate competing events is the subdistribution hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only few architectures have been proposed to model the distribution of time to a specific event in a competing events situation. These architectures are characterized by a separate subnetwork/pathway per event, leading to large networks with huge amounts of parameters that may become difficult to train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates weights derived from a time-discrete version of the classical subdistribution hazard model. With this, it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈子旋发布了新的文献求助10
2秒前
moncypool完成签到,获得积分10
3秒前
zwy1216完成签到,获得积分10
3秒前
5秒前
汉堡包应助肚子圆圆的采纳,获得10
5秒前
5秒前
平平宁发布了新的文献求助10
5秒前
天真大神完成签到,获得积分20
6秒前
7秒前
8秒前
Hello应助我唉科研采纳,获得10
8秒前
glanceofwind发布了新的文献求助10
9秒前
虚幻初之发布了新的文献求助10
11秒前
黄雪峰发布了新的文献求助10
13秒前
wyj发布了新的文献求助30
14秒前
Orange应助白之玉采纳,获得10
14秒前
陈子旋完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
热心市民小红花应助initial采纳,获得10
16秒前
在水一方应助wyj采纳,获得10
19秒前
周zzzzzz发布了新的文献求助10
19秒前
huangwensou发布了新的文献求助10
20秒前
20秒前
新火发布了新的文献求助10
21秒前
22秒前
hx发布了新的文献求助10
26秒前
fdscat发布了新的文献求助10
27秒前
周zzzzzz完成签到,获得积分10
27秒前
28秒前
伯赏人杰发布了新的文献求助10
28秒前
28秒前
充电宝应助小大夫采纳,获得10
31秒前
123发布了新的文献求助10
32秒前
fwx1997发布了新的文献求助10
32秒前
33秒前
英姑应助嗯嗯采纳,获得10
33秒前
flance完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021